OPT OpenIR  > 遥感与智能信息系统研究中心
Shadow detection for color remotely sensed images based on multi-feature integration
Liu, Jiahang1,2; Li, Deren3; Fang, Tao1
作者部门遥感与智能信息系统研究中心
2012-04-23
发表期刊JOURNAL OF APPLIED REMOTE SENSING
ISSN1931-3195
卷号6页码:063521
产权排序2
摘要

A novel shadow detection method for color remotely sensed images that satisfies requirements for both high accuracy and wide adaptability in applications is presented. This method builds on previously reported work investigating the shadow properties in both red/green/blue (RGB) and hue saturation value (HSV) color spaces. The method integrates several shadow features for modeling and uses a region growing (RG) algorithm and a perception machine (PM) of a neural network (NN) to identify shadows. To ensure efficiency of the parameters, first the proposed method uses a small number of shadow samples manually obtained from an input image to automatically estimate the necessary parameters. Then, the method uses the estimated threshold to binarize the hue map of the input image for obtaining possible shadow seeds and applies the RG algorithm to produce a candidate shadow map from the intensity channel. Subsequently, all of the hue, saturation, and intensity maps from the candidate shadow map are filtered with a corresponding band-pass filter, and the filtered results are input into the PM algorithm for the final shadow segmentation. Experiments indicate that the proposed algorithm has better performance in multiple cases, providing a new and practical shadow detection method. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.063521]

文章类型Article
关键词Shadow Detection Multi-feature Integration Image Segmentation Color Remotely Sensed Images Perception Machine
学科领域Environmental Sciences
WOS标题词Science & Technology ; Life Sciences & Biomedicine ; Technology
DOI10.1117/1.JRS.6.063521
收录类别SCI
关键词[WOS]AERIAL IMAGES ; BUILDINGS
语种英语
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000304035700001
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/20269
专题遥感与智能信息系统研究中心
作者单位1.Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
3.Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
推荐引用方式
GB/T 7714
Liu, Jiahang,Li, Deren,Fang, Tao. Shadow detection for color remotely sensed images based on multi-feature integration[J]. JOURNAL OF APPLIED REMOTE SENSING,2012,6:063521.
APA Liu, Jiahang,Li, Deren,&Fang, Tao.(2012).Shadow detection for color remotely sensed images based on multi-feature integration.JOURNAL OF APPLIED REMOTE SENSING,6,063521.
MLA Liu, Jiahang,et al."Shadow detection for color remotely sensed images based on multi-feature integration".JOURNAL OF APPLIED REMOTE SENSING 6(2012):063521.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Shadow detection for(4264KB)期刊论文出版稿限制开放CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Jiahang]的文章
[Li, Deren]的文章
[Fang, Tao]的文章
百度学术
百度学术中相似的文章
[Liu, Jiahang]的文章
[Li, Deren]的文章
[Fang, Tao]的文章
必应学术
必应学术中相似的文章
[Liu, Jiahang]的文章
[Li, Deren]的文章
[Fang, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。