Video super-resolution with 3D adaptive normalized convolution | |
Zhang, Kaibing2; Mu, Guangwu2; Yuan, Yuan1![]() | |
作者部门 | 光学影像分析与学习中心 |
2012-10-01 | |
发表期刊 | NEUROCOMPUTING
![]() |
ISSN | 0925-2312 |
卷号 | 94页码:140-151 |
产权排序 | 2 |
摘要 | The classic multi-image-based super-resolution (SR) methods typically take global motion pattern to produce one or multiple high-resolution (HR) versions from a set of low-resolution (LR) images. However, due to the influence of aliasing and noise, it is difficult to obtain highly accurate registration with sub-pixel accuracy. Moreover, in practical applications, the global motion pattern is rarely found in the real LR inputs. In this paper, to surmount or at least reduce the aforementioned problems, we develop a novel SR framework for video sequence by extending the traditional 2-dimentional (2D) normalized convolution (NC) to 3-dimentional (3D) case. In the proposed framework, to bypass explicit motion estimation, we estimate a target pixel by taking a weighted average of pixels from its neighborhood. We further up-scale the input video sequence in temporal dimension based on the extended 3D NC and hence more video frames can be generated. Fundamental experiments demonstrate the effectiveness of the proposed SR framework both quantitatively and perceptually. (C) 2012 Elsevier B.V. All rights reserved. |
文章类型 | Article |
关键词 | Normalized Convolution (Nc) Motion Estimation Video Super-resolution (Sr) |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1016/j.neucom.2012.03.012 |
收录类别 | SCI ; EI |
关键词[WOS] | HIGH-RESOLUTION IMAGE ; RECONSTRUCTION ALGORITHM ; MOTION ESTIMATION ; REGRESSION |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000307087000014 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/20265 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Peoples R China 2.Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China 3.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia 4.Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia |
推荐引用方式 GB/T 7714 | Zhang, Kaibing,Mu, Guangwu,Yuan, Yuan,et al. Video super-resolution with 3D adaptive normalized convolution[J]. NEUROCOMPUTING,2012,94:140-151. |
APA | Zhang, Kaibing,Mu, Guangwu,Yuan, Yuan,Gao, Xinbo,&Tao, Dacheng.(2012).Video super-resolution with 3D adaptive normalized convolution.NEUROCOMPUTING,94,140-151. |
MLA | Zhang, Kaibing,et al."Video super-resolution with 3D adaptive normalized convolution".NEUROCOMPUTING 94(2012):140-151. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Video super-resoluti(2213KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论