OPT OpenIR  > 空间光学技术研究室
Single image super resolution with high resolution dictionary
MuGuangwu; GaoXinbo; ZhangKaibing; LiXuelong; TaoDacheng; Mu Guangwu
2011
会议名称2011 18th IEEE International Conference on Image Processing, ICIP 2011
会议录名称Proceedings - International Conference on Image Processing, ICIP
页码1141-1144
会议日期September 11, 2011 - September 14, 2013
会议地点Brussels, Belgium
出版地445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States
出版者IEEE Computer Society
会议主办者IEEE; IEEE Signal Processing Society
产权排序2
摘要Image super resolution (SR) is a technique to estimate or synthesize a high resolution (HR) image from one or several low resolution (LR) images. This paper proposes a novel framework for single image super resolution based on sparse representation with high resolution dictionary. Unlike the previous methods, the training set is constructed from the HR images instead of HR-LR image pairs. Due to this property, there is no need to retrain a new dictionary when the zooming factor changed. Given a testing LR image, the patch-based representation coefficients and the desired image are estimated alternately through the use of dynamic group sparsity, the fidelity term and the non-local means regularization. Experimental results demonstrate the effectiveness of the proposed algorithm.
关键词Dynamic Group Sparsity Non-local Means Sparse Representation Super Resolution
作者部门光学影像分析与学习中心
收录类别EI
ISBN号9781457713033
语种英语
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/20122
专题空间光学技术研究室
通讯作者Mu Guangwu
推荐引用方式
GB/T 7714
MuGuangwu,GaoXinbo,ZhangKaibing,et al. Single image super resolution with high resolution dictionary[C]. 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States:IEEE Computer Society,2011:1141-1144.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Single image super r(1241KB) 限制开放--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[MuGuangwu]的文章
[GaoXinbo]的文章
[ZhangKaibing]的文章
百度学术
百度学术中相似的文章
[MuGuangwu]的文章
[GaoXinbo]的文章
[ZhangKaibing]的文章
必应学术
必应学术中相似的文章
[MuGuangwu]的文章
[GaoXinbo]的文章
[ZhangKaibing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。