OPT OpenIR  > 遥感与智能信息系统研究中心
Shadow Detection in Remotely Sensed Images Based on Self-Adaptive Feature Selection
Liu, Jiahang1,2,3; Fang, Tao1,2; Li, Deren4
作者部门遥感与智能信息系统研究中心
2011-12-01
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号49期号:12页码:5092-5103
产权排序3
摘要

Shadows in remotely sensed images create difficulties in many applications; thus, they should be effectively detected prior to further processing. This paper presents a novel semiautomatic shadow detection method that meets the requirements of both high accuracy and wide practicability in remote sensing applications. The proposed method uses only the properties derived from the shadow samples to dynamically generate a feature space and calculate decision parameters; then, it employs a series of transformations to separate shadow and nonshadow regions. The proposed method can detect shadows from both color and gray images. If the chromatic properties of color images do not agree with the defined rules through the shadow samples, then the shadow detection process will automatically reduce to the process for gray images. As the shadow samples are manually selected from the input image by the user, the derived parameters conform well to the characteristics of the input image. Experiments and comparisons indicate that the proposed self-adaptive feature selection algorithm is accurate, effective, and widely applicable to shadow detection in practical applications.

文章类型Article
关键词Chromatic Information Image Analysis Image Segmentation Remotely Sensed Image Self-adaptive Feature Selection (Safs) Shadow Detection Shadow Property
学科领域Geochemistry & Geophysics
WOS标题词Science & Technology ; Physical Sciences ; Technology
DOI10.1109/TGRS.2011.2158221
收录类别SCI ; EI
关键词[WOS]COLOR AERIAL IMAGES ; BUILDINGS
语种英语
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
项目资助者National Basic Research Program of China (973);National Natural Science Foundation of China
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000297282300012
引用统计
被引频次:58[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/19832
专题遥感与智能信息系统研究中心
作者单位1.Shanghai Jiao Tong Univ, Dept Automat, China Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
2.Shanghai Jiao Tong Univ, Minist Educ, China Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
4.Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
推荐引用方式
GB/T 7714
Liu, Jiahang,Fang, Tao,Li, Deren. Shadow Detection in Remotely Sensed Images Based on Self-Adaptive Feature Selection[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2011,49(12):5092-5103.
APA Liu, Jiahang,Fang, Tao,&Li, Deren.(2011).Shadow Detection in Remotely Sensed Images Based on Self-Adaptive Feature Selection.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,49(12),5092-5103.
MLA Liu, Jiahang,et al."Shadow Detection in Remotely Sensed Images Based on Self-Adaptive Feature Selection".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 49.12(2011):5092-5103.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Shadow Detection in (2581KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Jiahang]的文章
[Fang, Tao]的文章
[Li, Deren]的文章
百度学术
百度学术中相似的文章
[Liu, Jiahang]的文章
[Fang, Tao]的文章
[Li, Deren]的文章
必应学术
必应学术中相似的文章
[Liu, Jiahang]的文章
[Fang, Tao]的文章
[Li, Deren]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。