OPT OpenIR  > 瞬态光学研究室
Optical diffraction tomography based on quadriwave lateral shearing interferometry
Yuan, Xun1,2; Min, Junwei1; Zhou, Yuan1,2; Xue, Yuge1,2; Bai, Chen1; Li, Manman1; Xu, Xiaohao1; Yao, Baoli1,2
作者部门瞬态光学研究室
2024-10
发表期刊Optics and Laser Technology
ISSN00303992
卷号177
产权排序1
摘要

Optical diffraction tomography (ODT) is an emerging microscopy that enables quantitatively three-dimensional (3D) refractive index (RI) mapping of subcellular structure inside biological cells without staining. Due to the noninvasive, label-free, and quantitative imaging capability, ODT has become an important technique in the fields of cell biology, biophysics, hematology, and so on. It is customary to acquire a set of two-dimensional (2D) phase images of a transparent sample from different illumination angles by using the classical Mach-Zehnder interferometry (MZI), and then numerically reconstruct the 3D RI distribution of the sample via appropriate tomographic algorithms. However, due to the limited stability of MZI, the cumulative measured phase errors reduce the accuracy of the reconstructed RI. Here, we propose a common-path ODT based on quadriwave lateral shearing interferometry (QLSI), referred as Q-ODT. In QLSI, the object beam carrying the phase information of sample is divided into four copies by a specially designed 2D diffraction optical element, then the diffracted waves interfere with each other to form the interferogram at the image plane. The complex amplitude map of the object is quantitatively retrieved from the single-shot interferogram by using a Fourier analysis algorithm and a 2D phase gradient integration. A spatial light modulator is employed to ensure high-precision illumination angle scanning without mechanical motion by addressing a series of different periods and orientations blazed gratings. The average fluctuation of the measured phases of a test polystyrene bead by acquiring 300 interferograms in 12 s presents 7.6 mrad, surpassing the conventional MZI-based ODT. The 3D RI distribution of the bead reconstructed from 145 complex amplitude maps via multi-illumination angles with a maximum angle of 70° matches the manufacturer's specification well, demonstrating the high accuracy of the 3D RI imaging capability of the Q-ODT. The lateral and axial resolutions of the 3D RI reconstruction were measured to be 306 ± 21 nm and 825 ± 34 nm, respectively. The proposed Q-ODT method successfully reconstructed the intracellular structure of the biological specimens of Eudorina elegans and mouse bone mesenchymal stem cells (BMSC). The Q-ODT offers a new route towards 3D RI imaging for label-free transparent samples in biomedical research. © 2024 Elsevier Ltd

关键词Three-dimensional optical microscopy Quantitative phase imaging Optical imaging processing Refractive index measurement
DOI10.1016/j.optlastec.2024.111124
收录类别EI
语种英语
出版者Elsevier Ltd
EI入藏号20241916034871
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/97452
专题瞬态光学研究室
通讯作者Min, Junwei
作者单位1.State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China;
2.University of Chinese Academy of Sciences, Beijing; 100049, China
推荐引用方式
GB/T 7714
Yuan, Xun,Min, Junwei,Zhou, Yuan,et al. Optical diffraction tomography based on quadriwave lateral shearing interferometry[J]. Optics and Laser Technology,2024,177.
APA Yuan, Xun.,Min, Junwei.,Zhou, Yuan.,Xue, Yuge.,Bai, Chen.,...&Yao, Baoli.(2024).Optical diffraction tomography based on quadriwave lateral shearing interferometry.Optics and Laser Technology,177.
MLA Yuan, Xun,et al."Optical diffraction tomography based on quadriwave lateral shearing interferometry".Optics and Laser Technology 177(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Optical diffraction (8944KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, Xun]的文章
[Min, Junwei]的文章
[Zhou, Yuan]的文章
百度学术
百度学术中相似的文章
[Yuan, Xun]的文章
[Min, Junwei]的文章
[Zhou, Yuan]的文章
必应学术
必应学术中相似的文章
[Yuan, Xun]的文章
[Min, Junwei]的文章
[Zhou, Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。