OPT OpenIR  > 光学定向与测量技术研究室
Generative Adversarial Network-based Enhancement for Super-Resolution Reconstruction in Division of Focal Plane Images
Li, Shuo1,2; Wang, Weifeng1; Ji, Ran1,2; Luo, Zhanyi1,3
2023
会议名称7th International Conference on Electrical, Mechanical and Computer Engineering, ICEMCE 2023
会议录名称2023 7th International Conference on Electrical, Mechanical and Computer Engineering, ICEMCE 2023
页码879-883
会议日期2023-10-20
会议地点Hybrid, Xi'an, China
出版者Institute of Electrical and Electronics Engineers Inc.
产权排序1
摘要

Advancements in technology have refined polarization imaging systems for realtime, multi-directional imaging. However, their super-pixel design leads to instantaneous field of view (IFoV) issues. Addressing this, a super-resolution method using the Super-Resolution Generative Adversarial Network (SRGAN) has been introduced. This method efficiently recovers high-quality details from low-resolution polarimetric images. Using PSNR and SSIM metrics, this method demonstrates enhanced performance over existing techniques. © 2023 IEEE.

关键词Polarimetric imaging IFoV Super-Resolution construction SRGAN Deeeplearning Introduction
作者部门光学定向与测量技术研究室
DOI10.1109/ICEMCE60359.2023.10490495
收录类别EI
ISBN号9798350382877
语种英语
EI入藏号20241816005707
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/97445
专题光学定向与测量技术研究室
通讯作者Wang, Weifeng
作者单位1.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China;
2.School of Optoelectronics, University of Chinese Academy of Sciences, Xi'an, China;
3.School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
推荐引用方式
GB/T 7714
Li, Shuo,Wang, Weifeng,Ji, Ran,et al. Generative Adversarial Network-based Enhancement for Super-Resolution Reconstruction in Division of Focal Plane Images[C]:Institute of Electrical and Electronics Engineers Inc.,2023:879-883.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Generative Adversari(712KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Shuo]的文章
[Wang, Weifeng]的文章
[Ji, Ran]的文章
百度学术
百度学术中相似的文章
[Li, Shuo]的文章
[Wang, Weifeng]的文章
[Ji, Ran]的文章
必应学术
必应学术中相似的文章
[Li, Shuo]的文章
[Wang, Weifeng]的文章
[Ji, Ran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。