OPT OpenIR  > 光谱成像技术研究室
Brain Tumor Segmentation Algorithm Based on Multi-scale Deep Learning Networks
Qiu, Shi1; Wang, Xin2; Huang, Yao3; Zhang, Benvue4; Guo, Bolin4
2023
会议名称2023 China Automation Congress, CAC 2023
会议录名称Proceedings - 2023 China Automation Congress, CAC 2023
页码7145-7150
会议日期2023-11-17
会议地点Chongqing, China
出版者Institute of Electrical and Electronics Engineers Inc.
产权排序1
摘要Brain tumors seriously affect people's health, and the brain can be visualized by MRI, which provides the basis for physicians to accurately diagnose. Aiming at the problem that it is difficult to accurately segment brain tumors, a deep learning network is established to realize brain tumor segmentation. Firstly, according to the uncertainty of the region where the brain tumor is located, a multi-core convolutional model is constructed to obtain information at different scales. Then SP-Net is proposed, the constraint function is established and the brain tumor segmentation model is realized. © 2023 IEEE.
关键词Brain Tumor Segmentation Multi-scale Deep Learning
作者部门光谱成像技术研究室
DOI10.1109/CAC59555.2023.10451695
收录类别EI
ISBN号9798350303759
语种英语
EI入藏号20241515853120
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/97410
专题光谱成像技术研究室
作者单位1.Xi'An Institute of Optics and Precision Mechanics, CAS, Xi'an, China;
2.The First Hospital of xi'An Jiaotong University, Xi'an, China;
3.The Ninth Hospital of xi'An, Department of Oncology, Xi'an, China;
4.Xi'An Institute of Optics and Precision Mechanics, CAS University, Chinese Academy of Sciences, Xi'an, China
推荐引用方式
GB/T 7714
Qiu, Shi,Wang, Xin,Huang, Yao,et al. Brain Tumor Segmentation Algorithm Based on Multi-scale Deep Learning Networks[C]:Institute of Electrical and Electronics Engineers Inc.,2023:7145-7150.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Brain Tumor Segmenta(660KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiu, Shi]的文章
[Wang, Xin]的文章
[Huang, Yao]的文章
百度学术
百度学术中相似的文章
[Qiu, Shi]的文章
[Wang, Xin]的文章
[Huang, Yao]的文章
必应学术
必应学术中相似的文章
[Qiu, Shi]的文章
[Wang, Xin]的文章
[Huang, Yao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。