OPT OpenIR  > 光谱成像技术研究室
Active Interactive Labelling Massive Samples for Object Detection
Zhang, Jingwei1; Zhang, Mingguang1; Guo, Yi2; Qiu, Mengyu1
2023
会议名称11th ACM Symposium on Spatial User Interaction (SUI)
会议录名称ACM SYMPOSIUM ON SPATIAL USER INTERACTION, SUI 2023
会议日期2023-10-13
会议地点Sydney, AUSTRALIA
出版者ASSOC COMPUTING MACHINERY
产权排序2
摘要

Aerial object detection is the process of detecting objects in remote sensing images, such as aerial or satellite imagery. However, due to the unique characteristics and challenges of remote sensing images, such as large image sizes and dense distribution of small objects, annotating the data is time-consuming and costly. Active learning methods can reduce the cost of labeling data and improve the model's generalization ability by selecting the most informative and representative unlabeled samples. In this paper, we studied how to apply active learning techniques to remote sensing object detection tasks and found that traditional active learning frameworks are not suitable. Therefore, we designed a remote sensing task-oriented active learning framework that can more efficiently select representative samples and improve the performance of remote sensing object detection tasks. In addition, we proposed an adaptive weighting loss to further improve the generalization ability of the model in unlabeled areas. A large number of experiments conducted on the remote sensing dataset DOTA-v2.0 showed that applying various classical active learning methods to the new active learning framework can achieve better performance.

关键词aerial object detection active learning aerial remote sensing image
作者部门光谱成像技术研究室
DOI10.1145/3607822.3616407
收录类别CPCI
ISBN号979-8-4007-0281-5
语种英语
WOS记录号WOS:001138802600057
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/97181
专题光谱成像技术研究室
通讯作者Guo, Yi
作者单位1.Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Jingwei,Zhang, Mingguang,Guo, Yi,et al. Active Interactive Labelling Massive Samples for Object Detection[C]:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Active Interactive L(6479KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Jingwei]的文章
[Zhang, Mingguang]的文章
[Guo, Yi]的文章
百度学术
百度学术中相似的文章
[Zhang, Jingwei]的文章
[Zhang, Mingguang]的文章
[Guo, Yi]的文章
必应学术
必应学术中相似的文章
[Zhang, Jingwei]的文章
[Zhang, Mingguang]的文章
[Guo, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。