Compact lensless optoelectronic convolutional neural network for image classification | |
Zhang, Zaikun1,2,3; Da, Zhengshang3![]() ![]() ![]() | |
2023 | |
会议名称 | 14th International Conference on Information Optics and Photonics, CIOP 2023 |
会议录名称 | Fourteenth International Conference on Information Optics and Photonics, CIOP 2023 |
卷号 | 12935 |
会议日期 | 2023-08-07 |
会议地点 | Xi'an, China |
出版者 | SPIE |
产权排序 | 1 |
摘要 | Recently, free-space optical neural networks (ONNs) have gained extensive interest as emerging machine learning platforms for implementing artificial intelligence tasks, such as image classification. Despite various optical implementations of electronic neural networks (ENNs), the bulky volume of optical components remains challenging to deploy edge devices, such as Internet of Things peripherals, wearable devices, and camera. To address this problem, we propose a compact lensless optoelectronic convolutional neural network (LOE-CNN) architecture with a lensless optical analog processor utilizing a single optimized diffractive phase mask (DPM) to perform convolution operations without Fourier lens. Comparing the processor with a commercially available NVIDIA A100 Tensor Core GPU in terms of speed and power, indicates the optical computing platform enables to replace the electronic processor in latency reduction and energy savings. Furthermore, we compare the LOE-CNN with two all-electronic neural networks (i.e., fully connected neural network [FC-NN] and convolutional neural network [CNN]) over the Modified National Institute of Standards and Technology (MNIST) dataset and Fashion-MNIST dataset, respectively, and demonstrate that the LOE-CNN can be functionally comparable to existing electronic counterparts in classification performance. My study not only opens up new application prospects for free-space ONNs based on compact lensless single-chip convolution processor, but also facilitates the development of ONNs-based smart devices. © 2023 SPIE. |
关键词 | free-space optical neural network lensless convolution processor optoelectronic convolutional neural network image classification diffractive phase mask |
作者部门 | 光子功能材料与器件研究室 |
DOI | 10.1117/12.3000602 |
收录类别 | EI |
ISBN号 | 9781510671744 |
语种 | 英语 |
ISSN号 | 0277786X;1996756X |
EI入藏号 | 20235015220890 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/97074 |
专题 | 光子功能材料与器件研究室 |
通讯作者 | He, Zhengquan |
作者单位 | 1.State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China; 2.University of Chinese Academy of Sciences, Beijing; 100049, China; 3.The Advanced Optical Instrument Research Department, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China; 4.Xi'an Institute of Applied Optics, Xi'an; 710065, China |
推荐引用方式 GB/T 7714 | Zhang, Zaikun,Da, Zhengshang,Kong, Depeng,et al. Compact lensless optoelectronic convolutional neural network for image classification[C]:SPIE,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Compact lensless opt(7860KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论