Identity Feature Disentanglement for Visible-Infrared Person Re-Identification | |
Chen, Xiumei1,2,3; Zheng, Xiangtao4,5![]() ![]() | |
作者部门 | 光谱成像技术研究室 |
2023-11 | |
发表期刊 | ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
![]() |
ISSN | 1551-6857;1551-6865 |
卷号 | 19期号:6 |
产权排序 | 1 |
摘要 | Visible-infrared person re-identification (VI-ReID) task aims to retrieve persons from different spectrum cameras (i.e., visible and infrared images). The biggest challenge of VI-ReID is the huge cross-modal discrepancy caused by different imaging mechanisms. Many VI-ReID methods have been proposed by embedding different modal person images into a shared feature space to narrow the cross-modal discrepancy. However, these methods ignore the purification of identity features, which results in identity features containing different modal information and failing to align well. In this article, an identity feature disentanglement method is proposed to disentangle the identity features from identity-irrelevant information, such as pose and modality. Specifically, images of different modalities are first processed to extract shared features that reduce the cross-modal discrepancy preliminarily. Then the extracted feature of each image is disentangled into a latent identity variable and an identity-irrelevant variable. In order to enforce the latent identity variable to contain as much identity information as possible and as little identity-irrelevant information, an ID-discriminative loss and an ID-swapping reconstruction process are additionally designed. Extensive quantitative and qualitative experiments on two popular public VI-ReID datasets, RegDB and SYSU-MM01, demonstrate the efficacy and superiority of the proposed method. |
关键词 | Visible-infrared person re-identification cross-modal deep learning feature disentanglement |
DOI | 10.1145/3595183 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:001035785200024 |
出版者 | ASSOC COMPUTING MACHINERY |
EI入藏号 | 20233414595186 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/96726 |
专题 | 光谱成像技术研究室 |
通讯作者 | Lu, Xiaoqiang |
作者单位 | 1.Xidian Univ, Hangzhou Inst Technol, Hangzhou 311200, Zhejiang, Peoples R China 2.Xidian Univ, Sch Comp Sci Technol, Xian 710071, Shaanxi, Peoples R China 3.Chinese Acad Sci, Xian Inst Opt Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Shaanxi, Peoples R China 4.Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China 5.Chinese Acad Sci, Key Lab Spectral Imaging Technol CAS, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Xiumei,Zheng, Xiangtao,Lu, Xiaoqiang. Identity Feature Disentanglement for Visible-Infrared Person Re-Identification[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2023,19(6). |
APA | Chen, Xiumei,Zheng, Xiangtao,&Lu, Xiaoqiang.(2023).Identity Feature Disentanglement for Visible-Infrared Person Re-Identification.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,19(6). |
MLA | Chen, Xiumei,et al."Identity Feature Disentanglement for Visible-Infrared Person Re-Identification".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 19.6(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Identity Feature Dis(4309KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论