OPT OpenIR  > 光谱成像技术研究室
Adaptive convolution kernel network for change detection in hyperspectral images
Liu, Song1,2; Li, Haiwei1; Chen, Junyu1,2; Li, Siyuan1; Song, Liyao3; Zhang, Geng1; Hu, Bingliang1
作者部门光谱成像技术研究室
2023-03-10
发表期刊APPLIED OPTICS
ISSN1559-128X;2155-3165
卷号62期号:8页码:2039-2047
产权排序1
摘要

Feature extraction is a key step in hyperspectral image change detection. However, many targets with great various sizes, such as narrow paths, wide rivers, and large tracts of cultivated land, can appear in a satellite remote sens-ing image at the same time, which will increase the difficulty of feature extraction. In addition, the phenomenon that the number of changed pixels is much less than unchanged pixels will lead to class imbalance and affect the accuracy of change detection. To address the above issues, based on the U-Net model, we propose an adaptive con-volution kernel structure to replace the original convolution operations and design a weight loss function in the training stage. The adaptive convolution kernel contains two various kernel sizes and can automatically generate their corresponding weight feature map during training. Each output pixel obtains the corresponding convolution kernel combination according to the weight. This structure of automatically selecting the size of the convolution kernel can effectively adapt to different sizes of targets and extract multi-scale spatial features. The modified cross -entropy loss function solves the problem of class imbalance by increasing the weight of changed pixels. Study results on four datasets indicate that the proposed method performs better than most existing methods. & COPY; 2023 Optica Publishing Group

DOI10.1364/AO.479955
收录类别SCI
语种英语
WOS记录号WOS:001042420500001
出版者Optica Publishing Group
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/96708
专题光谱成像技术研究室
通讯作者Hu, Bingliang
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
推荐引用方式
GB/T 7714
Liu, Song,Li, Haiwei,Chen, Junyu,et al. Adaptive convolution kernel network for change detection in hyperspectral images[J]. APPLIED OPTICS,2023,62(8):2039-2047.
APA Liu, Song.,Li, Haiwei.,Chen, Junyu.,Li, Siyuan.,Song, Liyao.,...&Hu, Bingliang.(2023).Adaptive convolution kernel network for change detection in hyperspectral images.APPLIED OPTICS,62(8),2039-2047.
MLA Liu, Song,et al."Adaptive convolution kernel network for change detection in hyperspectral images".APPLIED OPTICS 62.8(2023):2039-2047.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Adaptive convolution(18855KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Song]的文章
[Li, Haiwei]的文章
[Chen, Junyu]的文章
百度学术
百度学术中相似的文章
[Liu, Song]的文章
[Li, Haiwei]的文章
[Chen, Junyu]的文章
必应学术
必应学术中相似的文章
[Liu, Song]的文章
[Li, Haiwei]的文章
[Chen, Junyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。