OPT OpenIR  > 光谱成像技术研究室
Detecting the Background-Similar Objects in Complex Transportation Scenes
Sun, Bangyong1; Ma, Ming1; Yuan, Nianzeng2; Li, Junhuai2; Yu, Tao3
作者部门光谱成像技术研究室
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
ISSN1524-9050;1558-0016
产权排序3
摘要

With the development of intelligent transportation systems, most human objects can be accurately detected in normal road scenes. However, the detection accuracy usually decreases sharply when the pedestrians are merged into the background with very similar colors or textures. In this paper, a camouflaged object detection method is proposed to detect the pedestrians or vehicles from the highly similar background. Specifically, we design a guide-learning-based multi-scale detection network (GLNet) to distinguish the weak semantic distinction between the pedestrian and its similar background, and output an accurate segmentation map to the autonomous driving system. The proposed GLNet mainly consists of a backbone network for basic feature extraction, a guide-learning module (GLM) to generate the principal prediction map, and a multi-scale feature enhancement module (MFEM) for prediction map refinement. Based on the guide learning and coarse-to-fine strategy, the final prediction map can be obtained with the proposed GLNet which precisely describes the position and contour information of the pedestrians or vehicles. Extensive experiments on four benchmark datasets, e.g., CHAMELEON, CAMO, COD10K, and NC4K, demonstrate the superiority of the proposed GLNet compared with several existing state-of-the-art methods.

关键词Feature extraction Task analysis Semantics Roads Object detection Meteorology Transportation Pedestrian detection automatic driving guide-learning
DOI10.1109/TITS.2023.3268378
收录类别SCI
语种英语
WOS记录号WOS:000980401000001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/96463
专题光谱成像技术研究室
通讯作者Li, Junhuai
作者单位1.Xian Univ Technol, Sch Printing Packaging & Digital Media, Xian 710048, Peoples R China
2.Xian Univ Technol, Sch Comp Sci & Engn, Xian 710048, Peoples R China
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Sun, Bangyong,Ma, Ming,Yuan, Nianzeng,et al. Detecting the Background-Similar Objects in Complex Transportation Scenes[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS.
APA Sun, Bangyong,Ma, Ming,Yuan, Nianzeng,Li, Junhuai,&Yu, Tao.
MLA Sun, Bangyong,et al."Detecting the Background-Similar Objects in Complex Transportation Scenes".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Detecting the Backgr(8061KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Bangyong]的文章
[Ma, Ming]的文章
[Yuan, Nianzeng]的文章
百度学术
百度学术中相似的文章
[Sun, Bangyong]的文章
[Ma, Ming]的文章
[Yuan, Nianzeng]的文章
必应学术
必应学术中相似的文章
[Sun, Bangyong]的文章
[Ma, Ming]的文章
[Yuan, Nianzeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。