OPT OpenIR  > 光谱成像技术研究室
Efficient dense attention fusion network with channel correlation loss for road damage detection
Liu, Zihan1; Jing, Kaifeng1; Yang, Kai2,3; Zhang, ZhiJun2; Li, Xijie2,3,4
作者部门光谱成像技术研究室
发表期刊IET INTELLIGENT TRANSPORT SYSTEMS
ISSN1751-956X;1751-9578
产权排序4
摘要

Road damage detection (RDD) is critical to society's safety and the efficient allocation of resources. Most road damage detection methods which directly adopt various object detection models face some significant challenges due to the characteristics of the RDD task. First, the damaged objects in the road images are highly diverse in scales and difficult to differentiate, making it more challenging than other tasks. Second, existing methods neglect the relationship between the feature distribution and model structure, which makes it difficult for optimization. To address these challenges, this study proposes an efficient dense attention fusion network with channel correlation loss for road damage detection. First, the K-Means++ algorithm is applied for data preprocessing to optimize the initial cluster centers and improve the model detection accuracy. Second, a dense attention fusion module is proposed to learn spatial-spectral attention to enhance multi-scale fusion features and improve the ability of the model to detect damage areas at different scales. Third, the channel correlation loss is adopted in the class prediction process to maintain the separability of intra and inter-class. The experimental results on the collected RDDA dataset and RDD2022 dataset show that the proposed method achieves state-of-the-art performance.

关键词data analysis image processing road safety
DOI10.1049/itr2.12369
收录类别SCI
语种英语
WOS记录号WOS:000972343700001
出版者WILEY
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/96444
专题光谱成像技术研究室
通讯作者Li, Xijie
作者单位1.AmazingX Acad, Foshan, Peoples R China
2.Wuhan Univ Technol, Sch Comp Sci & Artificial Intelligence, Wuhan, Peoples R China
3.Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya, Peoples R China
4.Xian Inst Opt & Precis Mech CAS, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Liu, Zihan,Jing, Kaifeng,Yang, Kai,et al. Efficient dense attention fusion network with channel correlation loss for road damage detection[J]. IET INTELLIGENT TRANSPORT SYSTEMS.
APA Liu, Zihan,Jing, Kaifeng,Yang, Kai,Zhang, ZhiJun,&Li, Xijie.
MLA Liu, Zihan,et al."Efficient dense attention fusion network with channel correlation loss for road damage detection".IET INTELLIGENT TRANSPORT SYSTEMS
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Efficient dense atte(1183KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Zihan]的文章
[Jing, Kaifeng]的文章
[Yang, Kai]的文章
百度学术
百度学术中相似的文章
[Liu, Zihan]的文章
[Jing, Kaifeng]的文章
[Yang, Kai]的文章
必应学术
必应学术中相似的文章
[Liu, Zihan]的文章
[Jing, Kaifeng]的文章
[Yang, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。