OPT OpenIR  > 光谱成像技术研究室
Unsupervised Transformer Boundary Autoencoder Network for Hyperspectral Image Change Detection
Liu, Song1,2; Li, Haiwei1; Wang, Feifei3; Chen, Junyu1,2; Zhang, Geng1; Song, Liyao4; Hu, Bingliang1
作者部门光谱成像技术研究室
2023-04
发表期刊REMOTE SENSING
ISSN2072-4292
卷号15期号:7
产权排序1
摘要

In the field of remote sens., change detection is an important monitoring technology. However, effectively extracting the change feature is still a challenge, especially with an unsupervised method. To solve this problem, we proposed an unsupervised transformer boundary autoencoder network (UTBANet) in this paper. UTBANet consists of a transformer structure and spectral attention in the encoder part. In addition to reconstructing hyperspectral images, UTBANet also adds a decoder branch for reconstructing edge information. The designed encoder module is used to extract features. First, the transformer structure is used for extracting the global features. Then, spectral attention can find important feature maps and reduce feature redundancy. Furthermore, UTBANet reconstructs the hyperspectral image and boundary information simultaneously through two decoders, which can improve the ability of the encoder to extract edge features. Our experiments demonstrate that the proposed structure significantly improves the performance of change detection. Moreover, comparative experiments show that our method is superior to most existing unsupervised methods.

关键词autoencoder boundary information change detection hyperspectral image unsupervised
DOI10.3390/rs15071868
收录类别SCI
语种英语
WOS记录号WOS:000968954700001
出版者BASEL
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/96437
专题光谱成像技术研究室
通讯作者Hu, Bingliang
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
4.Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
推荐引用方式
GB/T 7714
Liu, Song,Li, Haiwei,Wang, Feifei,et al. Unsupervised Transformer Boundary Autoencoder Network for Hyperspectral Image Change Detection[J]. REMOTE SENSING,2023,15(7).
APA Liu, Song.,Li, Haiwei.,Wang, Feifei.,Chen, Junyu.,Zhang, Geng.,...&Hu, Bingliang.(2023).Unsupervised Transformer Boundary Autoencoder Network for Hyperspectral Image Change Detection.REMOTE SENSING,15(7).
MLA Liu, Song,et al."Unsupervised Transformer Boundary Autoencoder Network for Hyperspectral Image Change Detection".REMOTE SENSING 15.7(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Unsupervised Transfo(5283KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Song]的文章
[Li, Haiwei]的文章
[Wang, Feifei]的文章
百度学术
百度学术中相似的文章
[Liu, Song]的文章
[Li, Haiwei]的文章
[Wang, Feifei]的文章
必应学术
必应学术中相似的文章
[Liu, Song]的文章
[Li, Haiwei]的文章
[Wang, Feifei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。