Enhanced Bayesian Factorization With Variant Scale Partitioning for Multivariate Time Series Analysis | |
Tang, Yunbo1; Chen, Dan1; Zuo, Yiping1; Lu, Xiaoqiang2,3![]() | |
作者部门 | 瞬态光学研究室 |
2023-04-01 | |
发表期刊 | IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
![]() |
ISSN | 1041-4347;1558-2191 |
卷号 | 35期号:4页码:3832-3845 |
产权排序 | 2 |
摘要 | Multivariate time series data (Mv-TSD) portray the evolving processes of the system(s) under examination in a multi-view manner. Factorization methods are salient for Mv-TSD analysis with the potentials of structural feature construction correlating various data attributes. However, research challenges remain in the derivation of factors dueto highly scattered data distribution of Mv-TSD and intensive interferences/outliers embedded in the source data. The proposed Enhanced Bayesian Factorization approach (Enhanced-BF) addresses the challenges in three phases: (1) variant scale partitioning applies to Mv-TSD according to degree of amplitude and obtains the blocks of variant scales; (2) hierarchical Bayesian model for tensor factorization automatically derives the factors of each block with interferences suppressed; (3) Bayesian unification model merges those block factors to construct the final structural features. Enhanced-BF has been evaluated using a case study of brain data engineering with multivariate electroencephalogram (EEG). Experimental results indicate that the proposed method manifests robustness to the interferences and outperforms the counterparts in terms of operation efficiency and error when factorizing EEG tensor. Besides, Enhanced-BFexcels in factorization-based analysis of ongoing autism spectrum disorder (ASD) EEG: 3 times speed-up in factorization and 87:35% accuracy in ASD discrimination. The latent factors (biomarkers) can distinctly interpret the typical EEG characteristics of ASD subjects. |
关键词 | Electroencephalography Bayes methods Tensors Brain modeling Feature extraction Time series analysis Time-frequency analysis Multivariate time series Bayesian factorization sparsity prior structural feature construction |
DOI | 10.1109/TKDE.2021.3128770 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000946283700041 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/96386 |
专题 | 瞬态光学研究室 |
通讯作者 | Chen, Dan |
作者单位 | 1.Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China 2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Beijing 100864, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Newcastle Univ, Newcastle Upon Tyne NE1 7RU, England 5.Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia 6.Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China 7.Beijing Normal Univ, Natl Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China |
推荐引用方式 GB/T 7714 | Tang, Yunbo,Chen, Dan,Zuo, Yiping,et al. Enhanced Bayesian Factorization With Variant Scale Partitioning for Multivariate Time Series Analysis[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2023,35(4):3832-3845. |
APA | Tang, Yunbo.,Chen, Dan.,Zuo, Yiping.,Lu, Xiaoqiang.,Ranjan, Rajiv.,...&Li, Xiaoli.(2023).Enhanced Bayesian Factorization With Variant Scale Partitioning for Multivariate Time Series Analysis.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,35(4),3832-3845. |
MLA | Tang, Yunbo,et al."Enhanced Bayesian Factorization With Variant Scale Partitioning for Multivariate Time Series Analysis".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 35.4(2023):3832-3845. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Enhanced Bayesian Fa(1911KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论