OPT OpenIR  > 光谱成像技术研究室
Blood Glucose Concentration Estimation by Raman Spectroscopy based on Particle Swarm Optimized SVR
Jing, Haonan1,2,3; Fan, Qi1,3; Gao, Chi1,2,3; Li, Yiru1,2,3; Fan, Bozhao1,2; Hu, Bingliang1,3; Feng, Yutao1; Wang, Quan1,3
2023
会议名称2022 Applied Optics and Photonics China: Optical Information and Networks, AOPC 2022
会议录名称AOPC 2022: Optical Information and Networks
卷号12562
会议日期2022-12-18
会议地点Virtual, Online, China
出版者SPIE
产权排序1
摘要

Blood glucose level has important significance for medical diagnosis. Blood glucose measurement in traditional methods requires collecting blood samples several times a day, which causes discomfort, environmental pollution and so on. As a "fingerprint" spectrum for molecular recognition, Raman spectroscopy has attracted attention in blood glucose measurement. However, blood glucose level is low and spectral signal of glucose is easy to be influenced by noise and other components. To improve accuracy of blood glucose concentration estimation by Raman spectroscopy, we carried out the Raman blood glucose measurement in vitro, the interferograms of blood samples in different glucose concentrations were measured by the self-developed Spatial Heterodyne Raman Spectrometer (SHRS), and converted the interferograms to one-dimensional spectroscopic data using Fourier transform. In order to get data with higher quality, we used wavelet decomposition to remove the noise and sparse representation to remove the signal baseline. Then, selected the spectroscopy at 500-2500 cm-1 as input, and the corresponding blood glucose concentration value as label, use particle swarm optimization-support vector regression (PSO-SVR) algorithm to construct the blood glucose concentration estimation model. The results show that the R2 of test set is 0.8041 and the RMSE is 1.8580. And the accuracy of blood glucose concentration estimation was evaluated by the Clark Error Grid. The model based on PSO-SVR can achieve accurate estimation of blood glucose concentration. This method has important research significance and application potential for blood glucose measurement. © 2023 SPIE.

关键词blood glucose concentration estimation Raman spectroscopy support vector regression particle swarm optimization wavelet decomposition sparse representation Clark Error Grid
作者部门光谱成像技术研究室
DOI10.1117/12.2651838
收录类别EI
ISBN号9781510662384
语种英语
ISSN号0277786X;1996756X
EI入藏号20230613559811
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/96351
专题光谱成像技术研究室
通讯作者Hu, Bingliang; Feng, Yutao; Wang, Quan
作者单位1.Key Laboratory of Spectral Imaging technology, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi’an; 710119, China;
2.University of Chinese Academy of Sciences, Beijing; 100049, China;
3.Key Laboratory of Biomedical Spectroscopy of Xi’an, Key Laboratory of Spectral Imaging technology, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi’an; 710119, China
推荐引用方式
GB/T 7714
Jing, Haonan,Fan, Qi,Gao, Chi,et al. Blood Glucose Concentration Estimation by Raman Spectroscopy based on Particle Swarm Optimized SVR[C]:SPIE,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Blood Glucose Concen(526KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jing, Haonan]的文章
[Fan, Qi]的文章
[Gao, Chi]的文章
百度学术
百度学术中相似的文章
[Jing, Haonan]的文章
[Fan, Qi]的文章
[Gao, Chi]的文章
必应学术
必应学术中相似的文章
[Jing, Haonan]的文章
[Fan, Qi]的文章
[Gao, Chi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。