Xi'an Institute of Optics and Precision Mechanics,CAS
Ensemble of half-space trees for hyperspectral anomaly detection | |
Huang, Ju1,2; Li, Xuelong1,3,4![]() | |
作者部门 | 海洋光学技术研究室 |
2022-09 | |
发表期刊 | SCIENCE CHINA-INFORMATION SCIENCES
![]() |
ISSN | 1674-733X;1869-1919 |
卷号 | 65期号:9 |
产权排序 | 1 |
摘要 | Most methods for hyperspectral anomaly detection (HAD) construct profiles of background pixels and identify pixels unconformable to the profiles as anomalies. Recently, isolation forest-based algorithms were introduced into HAD, which identifies anomalies from the background without background modeling. The path length is used as a metric to estimate the anomaly degree of a pixel, but it is not flexible and straightforward. This paper introduces the half-space tree (HS-tree) method from the theory of mass estimation into HAD and proposes a metric involving mass information and tree depth to measure the anomaly degree for each pixel. More specifically, the proposed HS-tree-based detection method consists of three main steps. First, the key spectral-spatial features are extracted using the principal component analysis and the extended morphological attribute profile methods. Then, the ensemble of HS-trees are trained using different randomly selected subsamples from the feature map. Finally, each instance in the feature map traverses through each HS-tree and the anomaly scores are computed as the final detection map. Compared with conventional methods, the experimental results on four real hyperspectral datasets demonstrate the competitiveness of our method in terms of accuracy and efficiency. |
关键词 | hyperspectral image anomaly detection extended morphological attribute profile mass estimation half-space tree |
DOI | 10.1007/s11432-021-3310-x |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000849351300005 |
出版者 | SCIENCE PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/96145 |
专题 | 海洋光学技术研究室 |
通讯作者 | Li, Xuelong |
作者单位 | 1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Shaanxi Key Lab Ocean Opt, Xian 710119, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China 4.Northwestern Polytech Univ, Key Lab Intelligent Interact & Applicat, Minist Ind & Informat Technol, Xian 710072, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, Ju,Li, Xuelong. Ensemble of half-space trees for hyperspectral anomaly detection[J]. SCIENCE CHINA-INFORMATION SCIENCES,2022,65(9). |
APA | Huang, Ju,&Li, Xuelong.(2022).Ensemble of half-space trees for hyperspectral anomaly detection.SCIENCE CHINA-INFORMATION SCIENCES,65(9). |
MLA | Huang, Ju,et al."Ensemble of half-space trees for hyperspectral anomaly detection".SCIENCE CHINA-INFORMATION SCIENCES 65.9(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Ensemble of half-spa(2153KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Huang, Ju]的文章 |
[Li, Xuelong]的文章 |
百度学术 |
百度学术中相似的文章 |
[Huang, Ju]的文章 |
[Li, Xuelong]的文章 |
必应学术 |
必应学术中相似的文章 |
[Huang, Ju]的文章 |
[Li, Xuelong]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论