OPT OpenIR  > 光谱成像技术研究室
Calibration Error Prediction: Ensuring High-Quality Mobile Eye-Tracking
Li, Beibin1,2; Snider, J.C.3; Wang, Quan4; Mehta, Sachin5; Foster, Claire6; Barney, Erin3; Shapiro, Linda1; Ventola, Pamela7; Shic, Frederick3,8
2022-06-08
会议名称2022 ACM Symposium on Eye Tracking Research and Applications, ETRA 2022
会议录名称Proceedings - ETRA 2022: ACM Symposium on Eye Tracking Research and Applications
会议日期2022-06-08
会议地点Virtual, Online, United states
出版者Association for Computing Machinery
产权排序4
摘要
Gaze calibration is common in traditional infrared oculographic eye tracking. However, it is not well studied in visible-light mobile/remote eye tracking. We developed a lightweight real-time gaze error estimator and analyzed calibration errors from two perspectives: facial feature-based and Monte Carlo-based. Both methods correlated with gaze estimation errors, but the Monte Carlo method associated more strongly. Facial feature associations with gaze error were interpretable, relating movements of the face to the visibility of the eye. We highlight the degradation of gaze estimation quality in a sample of children with autism spectrum disorder (as compared to typical adults), and note that calibration methods may improve Euclidean error by 10%.

© 2022 Owner/Author.

关键词datasets neural networks gaze detection text tagging
作者部门光谱成像技术研究室
DOI10.1145/3517031.3529634
收录类别EI
ISBN号9781450392525
语种英语
EI入藏号20222612267177
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/96027
专题光谱成像技术研究室
作者单位1.Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle; WA, United States
2.Microsoft Research, Redmond; WA, United States
3.Seattle Children's Research Institute, Seattle; WA, United States
4.Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China
5.Electrical and Computer Engineering, University of Washington, Seattle; WA, United States
6.Department of Psychology, Binghamton University, Binghamton; NY, United States
7.Yale Child Study Center, Yale University, New Haven; CT, United States
8.Department of Pediatrics, University of Washington, Seattle; WA, United States
推荐引用方式
GB/T 7714
Li, Beibin,Snider, J.C.,Wang, Quan,et al. Calibration Error Prediction: Ensuring High-Quality Mobile Eye-Tracking[C]:Association for Computing Machinery,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Calibration Error Pr(529KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Beibin]的文章
[Snider, J.C.]的文章
[Wang, Quan]的文章
百度学术
百度学术中相似的文章
[Li, Beibin]的文章
[Snider, J.C.]的文章
[Wang, Quan]的文章
必应学术
必应学术中相似的文章
[Li, Beibin]的文章
[Snider, J.C.]的文章
[Wang, Quan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。