OPT OpenIR  > 光谱成像技术研究室
Rotation-Invariant Attention Network for Hyperspectral Image Classification
Zheng, Xiangtao1; Sun, Hao1,2; Lu, Xiaoqiang1; Xie, Wei3
作者部门光谱成像技术研究室
2022
发表期刊IEEE Transactions on Image Processing
ISSN10577149;19410042
卷号31页码:4251-4265
产权排序1
摘要

Hyperspectral image (HSI) classification refers to identifying land-cover categories of pixels based on spectral signatures and spatial information of HSIs. In recent deep learning-based methods, to explore the spatial information of HSIs, the HSI patch is usually cropped from original HSI as the input. And 3 × 3 convolution is utilized as a key component to capture spatial features for HSI classification. However, the 3 × 3 convolution is sensitive to the spatial rotation of inputs, which results in that recent methods perform worse in rotated HSIs. To alleviate this problem, a rotation-invariant attention network (RIAN) is proposed for HSI classification. First, a center spectral attention (CSpeA) module is designed to avoid the influence of other categories of pixels to suppress redundant spectral bands. Then, a rectified spatial attention (RSpaA) module is proposed to replace 3 × 3 convolution for extracting rotation-invariant spectral-spatial features from HSI patches. The CSpeA module, the 1 × 1 convolution and the RSpaA module are utilized to build the proposed RIAN for HSI classification. Experimental results demonstrate that RIAN is invariant to the spatial rotation of HSIs and has superior performance, e.g., achieving an overall accuracy of 86.53% (1.04% improvement) on the Houston database. The codes of this work are available at https://github.com/spectralpublic/RIAN. © 1992-2012 IEEE.

关键词Hyperspectral image classification convolutional neural network rotation-invariant network spectralspatial feature extraction attention mechanism
DOI10.1109/TIP.2022.3177322
收录类别SCI ; EI
语种英语
WOS记录号WOS:000818885700004
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20222412225942
引用统计
被引频次:101[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/96025
专题光谱成像技术研究室
通讯作者Lu, Xiaoqiang
作者单位1.Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Key Laboratory of Spectral Imaging Technology CAS, Xi'an; 710119, China;
2.University of Chinese Academy of Sciences, Beijing; 100049, China;
3.Central China Normal University, Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, National Language Resources Monitoring and Research Center for Network Media, School of Computer, Wuhan; 430079, China
推荐引用方式
GB/T 7714
Zheng, Xiangtao,Sun, Hao,Lu, Xiaoqiang,et al. Rotation-Invariant Attention Network for Hyperspectral Image Classification[J]. IEEE Transactions on Image Processing,2022,31:4251-4265.
APA Zheng, Xiangtao,Sun, Hao,Lu, Xiaoqiang,&Xie, Wei.(2022).Rotation-Invariant Attention Network for Hyperspectral Image Classification.IEEE Transactions on Image Processing,31,4251-4265.
MLA Zheng, Xiangtao,et al."Rotation-Invariant Attention Network for Hyperspectral Image Classification".IEEE Transactions on Image Processing 31(2022):4251-4265.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Rotation-Invariant A(3409KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Xiangtao]的文章
[Sun, Hao]的文章
[Lu, Xiaoqiang]的文章
百度学术
百度学术中相似的文章
[Zheng, Xiangtao]的文章
[Sun, Hao]的文章
[Lu, Xiaoqiang]的文章
必应学术
必应学术中相似的文章
[Zheng, Xiangtao]的文章
[Sun, Hao]的文章
[Lu, Xiaoqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。