Rotation-Invariant Attention Network for Hyperspectral Image Classification | |
Zheng, Xiangtao1![]() ![]() | |
作者部门 | 光谱成像技术研究室 |
2022 | |
发表期刊 | IEEE Transactions on Image Processing
![]() |
ISSN | 10577149;19410042 |
卷号 | 31页码:4251-4265 |
产权排序 | 1 |
摘要 | Hyperspectral image (HSI) classification refers to identifying land-cover categories of pixels based on spectral signatures and spatial information of HSIs. In recent deep learning-based methods, to explore the spatial information of HSIs, the HSI patch is usually cropped from original HSI as the input. And 3 × 3 convolution is utilized as a key component to capture spatial features for HSI classification. However, the 3 × 3 convolution is sensitive to the spatial rotation of inputs, which results in that recent methods perform worse in rotated HSIs. To alleviate this problem, a rotation-invariant attention network (RIAN) is proposed for HSI classification. First, a center spectral attention (CSpeA) module is designed to avoid the influence of other categories of pixels to suppress redundant spectral bands. Then, a rectified spatial attention (RSpaA) module is proposed to replace 3 × 3 convolution for extracting rotation-invariant spectral-spatial features from HSI patches. The CSpeA module, the 1 × 1 convolution and the RSpaA module are utilized to build the proposed RIAN for HSI classification. Experimental results demonstrate that RIAN is invariant to the spatial rotation of HSIs and has superior performance, e.g., achieving an overall accuracy of 86.53% (1.04% improvement) on the Houston database. The codes of this work are available at https://github.com/spectralpublic/RIAN. © 1992-2012 IEEE. |
关键词 | Hyperspectral image classification convolutional neural network rotation-invariant network spectralspatial feature extraction attention mechanism |
DOI | 10.1109/TIP.2022.3177322 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000818885700004 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20222412225942 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/96025 |
专题 | 光谱成像技术研究室 |
通讯作者 | Lu, Xiaoqiang |
作者单位 | 1.Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Key Laboratory of Spectral Imaging Technology CAS, Xi'an; 710119, China; 2.University of Chinese Academy of Sciences, Beijing; 100049, China; 3.Central China Normal University, Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, National Language Resources Monitoring and Research Center for Network Media, School of Computer, Wuhan; 430079, China |
推荐引用方式 GB/T 7714 | Zheng, Xiangtao,Sun, Hao,Lu, Xiaoqiang,et al. Rotation-Invariant Attention Network for Hyperspectral Image Classification[J]. IEEE Transactions on Image Processing,2022,31:4251-4265. |
APA | Zheng, Xiangtao,Sun, Hao,Lu, Xiaoqiang,&Xie, Wei.(2022).Rotation-Invariant Attention Network for Hyperspectral Image Classification.IEEE Transactions on Image Processing,31,4251-4265. |
MLA | Zheng, Xiangtao,et al."Rotation-Invariant Attention Network for Hyperspectral Image Classification".IEEE Transactions on Image Processing 31(2022):4251-4265. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Rotation-Invariant A(3409KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论