CTT: CNN Meets Transformer for Tracking | |
Yang, Chen1,2; Zhang, Ximing1; Song, Zongxi1![]() | |
作者部门 | 空间光学技术研究室 |
2022-05 | |
发表期刊 | SENSORS
![]() |
ISSN | 1424-8220 |
卷号 | 22期号:9 |
产权排序 | 1 |
摘要 | Siamese networks are one of the most popular directions in the visual object tracking based on deep learning. In Siamese networks, the feature pyramid network (FPN) and the cross-correlation complete feature fusion and the matching of features extracted from the template and search branch, respectively. However, object tracking should focus on the global and contextual dependencies. Hence, we introduce a delicate residual transformer structure which contains a self-attention mechanism called encoder-decoder into our tracker as the part of neck. Under the encoder-decoder structure, the encoder promotes the interaction between the low-level features extracted from the target and search branch by the CNN to obtain global attention information, while the decoder replaces cross-correlation to send global attention information into the head module. We add a spatial and channel attention component in the target branch, which can further improve the accuracy and robustness of our proposed model for a low price. Finally, we detailly evaluate our tracker CTT on GOT-10k, VOT2019, OTB-100, LaSOT, NfS, UAV123 and TrackingNet benchmarks, and our proposed method obtains competitive results with the state-of-the-art algorithms. |
关键词 | self-attention tracking transformer CNN |
DOI | 10.3390/s22093210 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000794657200001 |
出版者 | MDPI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/95888 |
专题 | 空间光学技术研究室 |
通讯作者 | Song, Zongxi |
作者单位 | 1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710000, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Chen,Zhang, Ximing,Song, Zongxi. CTT: CNN Meets Transformer for Tracking[J]. SENSORS,2022,22(9). |
APA | Yang, Chen,Zhang, Ximing,&Song, Zongxi.(2022).CTT: CNN Meets Transformer for Tracking.SENSORS,22(9). |
MLA | Yang, Chen,et al."CTT: CNN Meets Transformer for Tracking".SENSORS 22.9(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
CTT CNN Meets Transf(3753KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论