Hilbert Transformation Deep Learning Network for Single-Shot Moiré Profilometry | |
Ma, Pu1; Du, Hubing1; Ma, Yueyang1; Zhang, Gaopeng2![]() | |
作者部门 | 飞行器光学成像与测量技术研究室 |
2022-04-21 | |
出处 | SSRN |
ISSN | 15565068 |
产权排序 | 2 |
摘要 | Phase demodulation from a single moiré fringe pattern is an ill-posed inverse problem, which limits the applications of moiré profilometry in dynamic 3D measurement. In this paper, a deep learning-based high-precision technique is used to tackle this problem arose from highly under sampled inputs. Our novel approach, to the best of our knowledge, termed 2D Hilbert transformation network, uses two Res U-Net networks paired with a dichotomous network to generate the desiredπ2 phase-shifting fringe pattern referred to the input. This process can be viewed as 2D Hilbert transformation of a fringe pattern. With this network, the wrapped phase can be extracted easily if the sampled fringes pattern is filtered and normalized in advance. Trained using simulated data, experimental results show that the proposed Hilbert transformation network provides a simple but robust solution for phase extraction from a single fringe pattern with phase error less than 0.02rad and, therefore, make it allow for paving a new way to reliable and practical learning-based single-shot Moiré profilometry. © 2022, The Authors. All rights reserved. |
收录类别 | EI |
语种 | 英语 |
出版者 | SSRN |
EI入藏号 | 20220086245 |
文献类型 | 预印本 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/95859 |
专题 | 飞行器光学成像与测量技术研究室 |
作者单位 | 1.School of Mechatronic Engineering, Xi’an Technological University, Shaanxi, Xi'An; 710032, China; 2.Xi'an Institute of Optics and Precision Mechanics, CAS, Xi'An; 710119, China; 3.State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Shaanxi, Xi'An; 710049, China |
推荐引用方式 GB/T 7714 | Ma, Pu,Du, Hubing,Ma, Yueyang,et al. Hilbert Transformation Deep Learning Network for Single-Shot Moiré Profilometry. 2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Hilbert Transformati(1987KB) | 预印本 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论