OPT OpenIR  > 光谱成像技术研究室
Spatial weighted kernel spectral angle constraint method for hyperspectral change detection
Liu, Song1,2; Song, Liyao3; Li, Haiwei1; Chen, Junyu1,2; Zhang, Geng1; Hu, Bingliang1; Wang, Shuang1; Li, Siyuan1
作者部门光谱成像技术研究室
2022
发表期刊Journal of Applied Remote Sensing
ISSN19313195
卷号16期号:1
产权排序1
摘要

Change detection is an important research direction in the field of remote sensing technology. However, for hyperspectral images, the nonlinear relationship between the two temporal images will increase the difficulty of judging whether the pixel is changed or not. To solve this problem, a hyperspectral change detection method is proposed in which the transformation matrices are obtained by using the constraint formula based on the minimum spectral angle, which uses both spectral and spatial information. Further, a kernel function is used to handle the nonlinear points. There are three main steps in the proposed method: First, the two temporal hyperspectral images are transformed into new dimensional space by a nonlinear function; second, in the dimension of observation, all the observations are combined into a vector, and then the two transformation matrices are obtained by using the formula of spectral angle constraint; and third, each pixel is given weight with a spatial weight map, which combined the spectral information and spatial information. Study results on three data sets indicate that the proposed method performs better than most unsupervised methods. © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE).

关键词change detection hyperspectral image kernel spectral angle
DOI10.1117/1.JRS.16.016503
收录类别SCI ; EI
语种英语
WOS记录号WOS:000777198700049
出版者SPIE
EI入藏号20221611975638
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/95848
专题光谱成像技术研究室
通讯作者Li, Haiwei; Zhang, Geng; Hu, Bingliang
作者单位1.Chinese Academy of Sciences, Xi'an Institute of Optics and Precision Mechanics, Key Laboratory of Spectral Imaging Technology of CAS, Xi'an, China;
2.University of Chinese Academy of Sciences, Beijing, China;
3.Xi'an Jiaotong University, School of Information and Communications Engineering, Xi'an, China
推荐引用方式
GB/T 7714
Liu, Song,Song, Liyao,Li, Haiwei,et al. Spatial weighted kernel spectral angle constraint method for hyperspectral change detection[J]. Journal of Applied Remote Sensing,2022,16(1).
APA Liu, Song.,Song, Liyao.,Li, Haiwei.,Chen, Junyu.,Zhang, Geng.,...&Li, Siyuan.(2022).Spatial weighted kernel spectral angle constraint method for hyperspectral change detection.Journal of Applied Remote Sensing,16(1).
MLA Liu, Song,et al."Spatial weighted kernel spectral angle constraint method for hyperspectral change detection".Journal of Applied Remote Sensing 16.1(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Spatial weighted ker(3507KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Song]的文章
[Song, Liyao]的文章
[Li, Haiwei]的文章
百度学术
百度学术中相似的文章
[Liu, Song]的文章
[Song, Liyao]的文章
[Li, Haiwei]的文章
必应学术
必应学术中相似的文章
[Liu, Song]的文章
[Song, Liyao]的文章
[Li, Haiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。