OPT OpenIR  > 光谱成像技术研究室
Fully Unsupervised Person Re-Identification by Enhancing Cluster Samples
Chen, Xiumei1,2; Zheng, Xiangtao1; Zhu, Kaijian3; Lu, Xiaoqiang1
2021-12-16
会议名称7th International Conference on Communication and Information Processing, ICCIP 2021
会议录名称2021 7th International Conference on Communication and Information Processing, ICCIP 2021
页码70-73
会议日期2021-12-16
会议地点Virtual, Online, China
出版者Association for Computing Machinery
产权排序1
摘要Fully unsupervised person re-identification aims to train a discriminative model with unlabeled person images. Most existing methods first generate pseudo labels by clustering image features (convolutional features) and then fine-tune the convolutional neural network (CNN) with pseudo labels. However, these methods are greatly limited by the quality of the pseudo labels. In this paper, a cluster sample enhancement method is introduced to increase the reliability of pseudo-label samples to facilitate the CNN training. Specifically, when generating pseudo labels, only the samples with high-confidence pseudo-label predictions are selected. In addition, to enhance the selected samples for training, two different image transformations are adopted and coupled with specific-design loss functions to boost the model performance. Experiments demonstrate the effectiveness of the proposed method. Concretely, the proposed method achieves 87.1% rank-1 and 70.2% mAP accuracy on Market-1501. © 2021 ACM.
关键词unsupervised person re-identification sample transformation convolutional neural network feature extraction
作者部门光谱成像技术研究室
DOI10.1145/3507971.3507984
收录类别EI
ISBN号9781450385190
语种英语
EI入藏号20221311871695
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/95804
专题光谱成像技术研究室
作者单位1.Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi, China;
2.University of Chinese Academy of Sciences Beijing, China;
3.State Key Laboratory of Astronautic Dynamics, Xi'an Satellite Control Center, Xi'an, Shaanxi, China
推荐引用方式
GB/T 7714
Chen, Xiumei,Zheng, Xiangtao,Zhu, Kaijian,et al. Fully Unsupervised Person Re-Identification by Enhancing Cluster Samples[C]:Association for Computing Machinery,2021:70-73.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Fully Unsupervised P(532KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Xiumei]的文章
[Zheng, Xiangtao]的文章
[Zhu, Kaijian]的文章
百度学术
百度学术中相似的文章
[Chen, Xiumei]的文章
[Zheng, Xiangtao]的文章
[Zhu, Kaijian]的文章
必应学术
必应学术中相似的文章
[Chen, Xiumei]的文章
[Zheng, Xiangtao]的文章
[Zhu, Kaijian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。