WEIGHTED SPARSITY CONSTRAINT TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING | |
Yuan, Yuan1![]() | |
2021 | |
会议名称 | 2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 |
会议录名称 | IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
卷号 | 2021-July |
页码 | 3333-3336 |
会议日期 | 2021-07-12 |
会议地点 | Brussels, Belgium |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
产权排序 | 2 |
摘要 | Recently, the unmixing methods based on non-negative tensor factorization (NTF) have received a lot of attention. Many NTF-based methods combine total variation (TV) regularization, aiming at maintaining the smoothness of the abundance maps to improve the performance of unmixing. However, the existing TV regularization ignores the sparsity sharing on the spatial difference images among different bands. To tackle this issue, a weighted total variation regularizer on the spatial difference maps of abundances is proposed in this paper, which uses the L2,1 norm to explore the sparse structure in abundances along the spectral dimension. In addition, the L1/2 norm is used to enhance the spatial sparsity of abundances. The proposed method can not only enhance the sparsity in abundances, but also keep the spatial similarity characteristics of data. Compared with the existing popular methods, the proposed method has superior performance on both synthetic data and real data. © 2021 IEEE. |
关键词 | Hyperspectral unmixing tensor factorization total variation sparse characteristics |
作者部门 | 光谱成像技术研究室 |
DOI | 10.1109/IGARSS47720.2021.9553154 |
收录类别 | EI |
ISBN号 | 9781665403696 |
语种 | 英语 |
EI入藏号 | 20221111780067 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/95803 |
专题 | 光谱成像技术研究室 |
通讯作者 | Yuan, Yuan |
作者单位 | 1.School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an; 710072, China; 2.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Shannxi, Xi'an; 710119, China; 3.University of Chinese Academy of Sciences, Beijing; 100049, China |
推荐引用方式 GB/T 7714 | Yuan, Yuan,Dong, Le. WEIGHTED SPARSITY CONSTRAINT TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING[C]:Institute of Electrical and Electronics Engineers Inc.,2021:3333-3336. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
WEIGHTED SPARSITY CO(449KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yuan, Yuan]的文章 |
[Dong, Le]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yuan, Yuan]的文章 |
[Dong, Le]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yuan, Yuan]的文章 |
[Dong, Le]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论