Cross-Attention Spectral-Spatial Network for Hyperspectral Image Classification | |
Yang, Kai1; Sun, Hao1; Zou, Chunbo2; Lu, Xiaoqiang3![]() | |
作者部门 | 光谱成像技术研究室 |
2022 | |
发表期刊 | IEEE Transactions on Geoscience and Remote Sensing
![]() |
ISSN | 01962892;15580644 |
卷号 | 60 |
产权排序 | 1 |
摘要 | Hyperspectral image (HSI) classification aims to identify categories of hyperspectral pixels. Recently, many convolutional neural networks (CNNs) have been designed to explore the spectrums and spatial information of HSI for classification. In recent CNN-based methods, 2-D or 3-D convolutions are inevitably utilized as basic operations to extract the spatial or spectral-spatial features. However, 2-D and 3-D convolutions are sensitive to the image rotation, which may result in that recent CNN-based methods are not robust to the HSI rotation. In this paper, a cross-attention spectral-spatial network (CASSN) is proposed to alleviate the problem of HSI rotation. First, a cross spectral attention component is proposed to exploit the local and global spectrums of the pixel to generate band weight for suppress redundant bands. Second, a spectral feature extraction component is utilized to capture spectral features. Then, a cross spatial attention component is proposed to generate spectral-spatial features from the HSI patch under the guidance of the pixel to be classified. Finally, the spectral-spatial feature is fed to a softmax classifier to obtain the category. The effectiveness of CASSN is demonstrated on three public databases. IEEE |
关键词 | Hyperspectral image classification convolutional neural networks spectral attention spatial attention |
DOI | 10.1109/TGRS.2021.3133582 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000761235500011 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20215111369025 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/95617 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi, P. R. China, and University of Chinese Academy of Sciences, Beijing 100049, P. R. China.; 2.Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi, P. R. China.; 3.Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi, P. R. China. (e-mail: luxq666666@gmail.com) |
推荐引用方式 GB/T 7714 | Yang, Kai,Sun, Hao,Zou, Chunbo,et al. Cross-Attention Spectral-Spatial Network for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60. |
APA | Yang, Kai,Sun, Hao,Zou, Chunbo,&Lu, Xiaoqiang.(2022).Cross-Attention Spectral-Spatial Network for Hyperspectral Image Classification.IEEE Transactions on Geoscience and Remote Sensing,60. |
MLA | Yang, Kai,et al."Cross-Attention Spectral-Spatial Network for Hyperspectral Image Classification".IEEE Transactions on Geoscience and Remote Sensing 60(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Cross-Attention Spec(3919KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论