OPT OpenIR  > 光电跟踪与测量技术研究室
Blood Pressure Evaluation Based on Photoplethysmography Using Deep Learning
Sun Xiaoxiao1,2; Zhou Liang2; Liu Zhaohui2; Yu Jiangjun1,2; Qiao Wenlong1,2
2020
会议名称Applied Optics and Photonics China (AOPC) Conference - Optical Spectroscopy and Imaging and Biomedical Optics
会议录名称AOPC 2020: OPTICAL SPECTROSCOPY AND IMAGING; AND BIOMEDICAL OPTICS
卷号11566
会议日期2020-11-30
会议地点Beijing, PEOPLES R CHINA
出版者SPIE-INT SOC OPTICAL ENGINEERING
产权排序1
摘要

In recent years, the number of patients with hypertension has increased. Hypertension is an invisible killer. Long-term hypertension can cause a series of cardiovascular diseases such as angina pectoris, stroke, and heart failure. Therefore, early evaluation and grade assessment of blood pressure (BP) are essential to human health. The seventh report of the National Joint Committee for the Prevention, Detection, Evaluation, and Treatment of Hypertension in the United States (JNC7) classified BP levels into normotension (NT), prehypertension (PHT) and hypertension (HT). In this paper, we adopted a deep learning model (ResNet18) based on the ensemble empirical mode decomposition (EEMD) and the Hilbert Transform (HT) to predict the risk level of BP only using photoplethysmography (PPG) signals. We collected 582 data records from the Multiparameter Intelligent Monitoring in Intensive Care database (MIMIC), and each file contained arterial BP signals as the labels for inputs and the corresponding PPG signals as the inputs. Besides, the last fully connected layer of the model was initialized. We conducted three classification experiments: HT vs. NT, HT vs. PHT, and (HT + PHT) vs. NT, the F1 score of these three classification experiments is 88.03%, 70.94%, and 84.88%, respectively. A quick and accessible noninvasive BP evaluation method was offered to low- and middle- income countries.

关键词Blood pressure (BP) Photoplethysmography (PPG) Convolutional neural network( CNN) Ensemble empirical mode decomposition (EEMD)
作者部门光电跟踪与测量技术研究室
DOI10.1117/12.2576841
收录类别CPCI
ISBN号978-1-5106-3954-6
语种英语
ISSN号0277-786X;1996-756X
WOS记录号WOS:000661249000032
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/94943
专题光电跟踪与测量技术研究室
通讯作者Zhou Liang
作者单位1.Chinese Academy of Sciences University of Chinese Academy of Sciences, CAS
2.Chinese Academy of Sciences Xi'an Institute of Optics & Precision Mechanics, CAS
推荐引用方式
GB/T 7714
Sun Xiaoxiao,Zhou Liang,Liu Zhaohui,et al. Blood Pressure Evaluation Based on Photoplethysmography Using Deep Learning[C]:SPIE-INT SOC OPTICAL ENGINEERING,2020.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Blood Pressure Evalu(442KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun Xiaoxiao]的文章
[Zhou Liang]的文章
[Liu Zhaohui]的文章
百度学术
百度学术中相似的文章
[Sun Xiaoxiao]的文章
[Zhou Liang]的文章
[Liu Zhaohui]的文章
必应学术
必应学术中相似的文章
[Sun Xiaoxiao]的文章
[Zhou Liang]的文章
[Liu Zhaohui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。