An Anomaly Detection Algorithm for Hyperspectral Imagery based on Graph Laplacian | |
Gan Yuquan1,2![]() ![]() ![]() | |
2020 | |
会议名称 | Applied Optics and Photonics China (AOPC) Conference - Optical Spectroscopy and Imaging and Biomedical Optics |
会议录名称 | AOPC 2020: OPTICAL SPECTROSCOPY AND IMAGING; AND BIOMEDICAL OPTICS |
卷号 | 11566 |
会议日期 | 2020-11-30 |
会议地点 | Beijing, PEOPLES R CHINA |
出版者 | SPIE-INT SOC OPTICAL ENGINEERING |
产权排序 | 3 |
摘要 | Traditional anomaly detection algorithms for hyperspectral imagery does not consider spatial information of imagery, which decreases detection efficiency of anomaly detection. The traditional RXD algorithm uses Gauss model to evaluate the distribution of background, but ignores spatial correlation of the imagery. Aiming at improving detection efficiency, this paper proposed an anomaly detection algorithm which utilize both spatial and spectral information of hyperspectral imagery based on graph Laplacian. In this paper, an anomaly detection algorithm for hyperspectral imagery based on graph Laplacian (Graph Laplacian Anomaly Detection with Mahalanobis distance, LADM) is presented. The spatial information is considered in the model by graph Laplacian matrix. First, LADM considers not only spectral information but also the spatial information by mapping image to a graph. Secondly, a symmetrical normalization Laplacian matrix is constructed for the graph with Mahalanobis distance. The operation eliminates interference among the nodes, which improves the accuracy of Laplacian matrix and improves the detection result. Thirdly, LADM detectors is constructed with graph Laplacian detection model. Lastly, anomaly detection model based on graph is given based on graph Laplacian and spectral vector of the pixels. A threshold value is given to judge whether the currently detection pixel is anomaly or not. Experiments for synthetic data and real hyperspectral image is proposed in this paper. The proposed algorithm is compared with three classical anomaly detection algorithms. ROC curves and AUC values are given for both synthetic data and real data in the paper. Experiments results show that LADM algorithm can improve the accuracy of anomaly detection for hyperspectral imagery, and reduced the false alarm rate. |
关键词 | Graph Laplacian Weighted Matrix Mahalanobis Distance Anomaly Detection Hyperspectral Images |
作者部门 | 光谱成像技术研究室 |
DOI | 10.1117/12.2575009 |
收录类别 | CPCI |
ISBN号 | 978-1-5106-3954-6 |
语种 | 英语 |
ISSN号 | 0277-786X;1996-756X |
WOS记录号 | WOS:000661249000007 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94940 |
专题 | 光谱成像技术研究室 |
通讯作者 | Gan Yuquan |
作者单位 | 1.Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Peoples R China 2.Minist Publ Secur, Key Lab Elect Informat Applicat Technol Scene Inv, Xian 710121, Peoples R China 3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China |
推荐引用方式 GB/T 7714 | Gan Yuquan,Liu Ying,Yang Fanchao. An Anomaly Detection Algorithm for Hyperspectral Imagery based on Graph Laplacian[C]:SPIE-INT SOC OPTICAL ENGINEERING,2020. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
An Anomaly Detection(405KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论