Discriminative Invariant Alignment for Unsupervised Domain Adaptation | |
Li, Desheng1; Lu, Yuwu2; Wang, Wenjing3; Lai, Zhihui4; Zhou, Jie5; Li, X.6 | |
作者部门 | 光谱成像技术研究室 |
发表期刊 | IEEE Transactions on Multimedia
![]() |
ISSN | 15209210;19410077 |
产权排序 | 6 |
摘要 | As one of the most prevalent branches of transfer learning, domain adaptation is dedicated to generalizing the knowledge of a source domain to a target domain to perform machine learning tasks. In domain adaptation, the key strategy is to overcome the shift between different domains and learn shared features with domain invariance. However, most existing methods focus on extracting the common features of the source and target domains, and do not consider the shift problem of class center in the target domain caused by this process. Specifically, when we align the domain distributions, we often ignore the inherent feature attributes of the data, or under the guidance of false pseudo-labels, cause the target domain data to be far away from the class center after projection. This is not conducive to classification task. To address these problems, in this study, we propose a novel domain adaptation method, referred to as discriminative invariant alignment (DIA), for image representation. DIA enriches the knowledge matrix by combining the class discriminative information of the source domain and local data structure information of the target domain into a new framework. By introducing the maximum margin criterion of the source domain, the classification boundaries are expanded. To verify the performance of the proposed method, we compared DIA with several state-of-the-art methods on five benchmark databases. The experimental results show that DIA is superior to the state-of-the-art methods. IEEE |
关键词 | Domain adaptation subspace learning maximum margin criterion |
DOI | 10.1109/TMM.2021.3073258 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20211710259247 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94712 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.Computer science school, Shenzhen University, 47890 Shenzhen, Guangdong, China, (e-mail: lidesheng2019@email.szu.edu.cn); 2.Bio-Computing Research Center, Shenzhen Graduate School of Tsinghua University, Shenzhen, Guang Dong, China, 518055 (e-mail: luyuwu2008@163.com); 3.Computer science, Shenzhen University, 47890 Shenzhen, Guangdong, China, (e-mail: wangwenjing2018@email.szu.edu.cn); 4.School of Computer and Software, Shenzhen University, 47890 Shenzhen, Guangdong, China, 518060 (e-mail: lai_zhi_hui@163.com); 5.College of Computer Science and Software Engineering, Shenzhen University, 47890 Shenzhen, Guangdong, China, (e-mail: jie_jpu@163.com); 6.Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Xi'an, Shaanxi, China, (e-mail: xuelong_li@opt.ac.cn) |
推荐引用方式 GB/T 7714 | Li, Desheng,Lu, Yuwu,Wang, Wenjing,et al. Discriminative Invariant Alignment for Unsupervised Domain Adaptation[J]. IEEE Transactions on Multimedia. |
APA | Li, Desheng,Lu, Yuwu,Wang, Wenjing,Lai, Zhihui,Zhou, Jie,&Li, X.. |
MLA | Li, Desheng,et al."Discriminative Invariant Alignment for Unsupervised Domain Adaptation".IEEE Transactions on Multimedia |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Discriminative Invar(2573KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论