OPT OpenIR  > 光谱成像技术研究室
Discriminative Invariant Alignment for Unsupervised Domain Adaptation
Li, Desheng1; Lu, Yuwu2; Wang, Wenjing3; Lai, Zhihui4; Zhou, Jie5; Li, X.6
作者部门光谱成像技术研究室
发表期刊IEEE Transactions on Multimedia
ISSN15209210;19410077
产权排序6
摘要

As one of the most prevalent branches of transfer learning, domain adaptation is dedicated to generalizing the knowledge of a source domain to a target domain to perform machine learning tasks. In domain adaptation, the key strategy is to overcome the shift between different domains and learn shared features with domain invariance. However, most existing methods focus on extracting the common features of the source and target domains, and do not consider the shift problem of class center in the target domain caused by this process. Specifically, when we align the domain distributions, we often ignore the inherent feature attributes of the data, or under the guidance of false pseudo-labels, cause the target domain data to be far away from the class center after projection. This is not conducive to classification task. To address these problems, in this study, we propose a novel domain adaptation method, referred to as discriminative invariant alignment (DIA), for image representation. DIA enriches the knowledge matrix by combining the class discriminative information of the source domain and local data structure information of the target domain into a new framework. By introducing the maximum margin criterion of the source domain, the classification boundaries are expanded. To verify the performance of the proposed method, we compared DIA with several state-of-the-art methods on five benchmark databases. The experimental results show that DIA is superior to the state-of-the-art methods. IEEE

关键词Domain adaptation subspace learning maximum margin criterion
DOI10.1109/TMM.2021.3073258
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20211710259247
引用统计
被引频次:49[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/94712
专题光谱成像技术研究室
作者单位1.Computer science school, Shenzhen University, 47890 Shenzhen, Guangdong, China, (e-mail: lidesheng2019@email.szu.edu.cn);
2.Bio-Computing Research Center, Shenzhen Graduate School of Tsinghua University, Shenzhen, Guang Dong, China, 518055 (e-mail: luyuwu2008@163.com);
3.Computer science, Shenzhen University, 47890 Shenzhen, Guangdong, China, (e-mail: wangwenjing2018@email.szu.edu.cn);
4.School of Computer and Software, Shenzhen University, 47890 Shenzhen, Guangdong, China, 518060 (e-mail: lai_zhi_hui@163.com);
5.College of Computer Science and Software Engineering, Shenzhen University, 47890 Shenzhen, Guangdong, China, (e-mail: jie_jpu@163.com);
6.Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Xi'an, Shaanxi, China, (e-mail: xuelong_li@opt.ac.cn)
推荐引用方式
GB/T 7714
Li, Desheng,Lu, Yuwu,Wang, Wenjing,et al. Discriminative Invariant Alignment for Unsupervised Domain Adaptation[J]. IEEE Transactions on Multimedia.
APA Li, Desheng,Lu, Yuwu,Wang, Wenjing,Lai, Zhihui,Zhou, Jie,&Li, X..
MLA Li, Desheng,et al."Discriminative Invariant Alignment for Unsupervised Domain Adaptation".IEEE Transactions on Multimedia
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Discriminative Invar(2573KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Desheng]的文章
[Lu, Yuwu]的文章
[Wang, Wenjing]的文章
百度学术
百度学术中相似的文章
[Li, Desheng]的文章
[Lu, Yuwu]的文章
[Wang, Wenjing]的文章
必应学术
必应学术中相似的文章
[Li, Desheng]的文章
[Lu, Yuwu]的文章
[Wang, Wenjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。