Data Augmentation and Spectral Structure Features for Limited Samples Hyperspectral Classification | |
Wang, Wenning1,2,3,4; Liu, Xuebin1,3![]() | |
作者部门 | 光谱成像技术研究室 |
2021-02-01 | |
发表期刊 | REMOTE SENSING
![]() |
ISSN | 2072-4292 |
卷号 | 13期号:4页码:20 |
产权排序 | 1 |
摘要 | For both traditional classification and current popular deep learning methods, the limited sample classification problem is very challenging, and the lack of samples is an important factor affecting the classification performance. Our work includes two aspects. First, the unsupervised data augmentation for all hyperspectral samples not only improves the classification accuracy greatly with the newly added training samples, but also further improves the classification accuracy of the classifier by optimizing the augmented test samples. Second, an effective spectral structure extraction method is designed, and the effective spectral structure features have a better classification accuracy than the true spectral features. |
关键词 | hyperspectral classification data augmentation structural features small sample classification |
DOI | 10.3390/rs13040547 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of China[61501456] ; Natural Science Foundation of China[11701337] ; National Natural Science Foundation of China[11701337] ; National Natural Science Foundation of China[.61501456] |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
项目资助者 | Natural Science Foundation of China ; National Natural Science Foundation of China |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000624451200001 |
出版者 | MDPI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94639 |
专题 | 光谱成像技术研究室 |
通讯作者 | Wang, Wenning |
作者单位 | 1.Chinese Acad Sci, Key Lab Spectral Imaging Technol CAS, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China 2.Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Xian 710049, Peoples R China 3.Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China 4.Shandong Agr Univ, Sch Informat Sci & Engn, Tai An, Shandong, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Wenning,Liu, Xuebin,Mou, Xuanqin. Data Augmentation and Spectral Structure Features for Limited Samples Hyperspectral Classification[J]. REMOTE SENSING,2021,13(4):20. |
APA | Wang, Wenning,Liu, Xuebin,&Mou, Xuanqin.(2021).Data Augmentation and Spectral Structure Features for Limited Samples Hyperspectral Classification.REMOTE SENSING,13(4),20. |
MLA | Wang, Wenning,et al."Data Augmentation and Spectral Structure Features for Limited Samples Hyperspectral Classification".REMOTE SENSING 13.4(2021):20. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
remotesensing-13-005(23743KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论