Generative Adversarial Capsule Network With ConvLSTM for Hyperspectral Image Classification | |
Wang, Wei-Ye1; Li, Heng-Chao1; Deng, Yang-Jun1; Shao, Li-Yang2; Lu, Xiao-Qiang3,4![]() | |
作者部门 | 光谱成像技术研究室 |
2021-03-01 | |
发表期刊 | IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
![]() |
ISSN | 1545-598X |
卷号 | 18期号:3页码:523-527 |
产权排序 | 3 |
摘要 | Recently, deep learning has been widely applied in hyperspectral image (HSI) classification since it can extract high-level spatial-spectral features. However, deep learning methods are restricted due to the lack of sufficient annotated samples. To address this problem, this letter proposes a novel generative adversarial network (GAN) for HSI classification that can generate artificial samples for data augmentation to improve the HSI classification performance with few training samples. In the proposed network, a new discriminator is designed by exploiting capsule network (CapsNet) and convolutional long short-term memory (ConvLSTM), which extracts the low-level features and combines them together with local space sequence information to form the high-level contextual features. In addition, a structured sparse L-2(,1) constraint is imposed on sample generation to control the modes of data being generated and achieve more stable training. The experimental results on two real HSI data sets show that the proposed method can obtain better classification performance than the several state-of-the-art deep classification methods. |
关键词 | Capsule network (CapsNet) convolutional neural network (CNN) data augmentation deep learning generative adversarial network (GAN) hyperspectral image (HSI) classification |
DOI | 10.1109/LGRS.2020.2976482 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61871335] |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
项目资助者 | National Natural Science Foundation of China |
WOS类目 | Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000622098500031 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94594 |
专题 | 光谱成像技术研究室 |
通讯作者 | Li, Heng-Chao; Deng, Yang-Jun |
作者单位 | 1.Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 610031, Peoples R China 2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China 3.Chinese Acad Sci, Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China 4.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China 5.Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA |
推荐引用方式 GB/T 7714 | Wang, Wei-Ye,Li, Heng-Chao,Deng, Yang-Jun,et al. Generative Adversarial Capsule Network With ConvLSTM for Hyperspectral Image Classification[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2021,18(3):523-527. |
APA | Wang, Wei-Ye,Li, Heng-Chao,Deng, Yang-Jun,Shao, Li-Yang,Lu, Xiao-Qiang,&Du, Qian.(2021).Generative Adversarial Capsule Network With ConvLSTM for Hyperspectral Image Classification.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,18(3),523-527. |
MLA | Wang, Wei-Ye,et al."Generative Adversarial Capsule Network With ConvLSTM for Hyperspectral Image Classification".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 18.3(2021):523-527. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
09032346.pdf(3457KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论