OPT OpenIR  > 光谱成像技术研究室
Spectral-Spatial Joint Sparse NMF for Hyperspectral Unmixing
Dong, Le1,3; Yuan, Yuan2,4; Lu, Xiaoqiang1
作者部门光谱成像技术研究室
2021-03
发表期刊IEEE Transactions on Geoscience and Remote Sensing
ISSN01962892;15580644
卷号59期号:3页码:2391-2402
产权排序1
摘要

The nonnegative matrix factorization (NMF) combining with spatial-spectral contextual information is an important technique for extracting endmembers and abundances of hyperspectral image (HSI). Most methods constrain unmixing by the local spatial position relationship of pixels or search spectral correlation globally by treating pixels as an independent point in HSI. Unfortunately, they ignore the complex distribution of substance and rich contextual information, which makes them effective in limited cases. In this article, we propose a novel unmixing method via two types of self-similarity to constrain sparse NMF. First, we explore the spatial similarity patch structure of data on the whole image to construct the spatial global self-similarity group between pixels. And according to the regional continuity of the feature distribution, the spectral local self-similarity group of pixels is created inside the superpixel. Then based on the sparse expression of the pixel in the subspace, we sparsely encode the pixels in the same spatial group and spectral group respectively. Finally, the abundance of pixels within each group is forced to be similar to constrain the NMF unmixing framework. Experiments on synthetic and real data fully demonstrate the superiority of our method over other existing methods. © 1980-2012 IEEE.

关键词Global spatial structure group local spectral group nonnegative matrix factorization (NMF) sparse expression
DOI10.1109/TGRS.2020.3006109
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20211010019659
引用统计
被引频次:48[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/94527
专题光谱成像技术研究室
通讯作者Lu, Xiaoqiang
作者单位1.Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 10119, China;
2.School of Computer Science, Northwestern Polytechnical University, Xi'an; 710072, China;
3.University of Chinese Academy of Sciences, Beijing; 100049, China;
4.Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an; 710072, China
推荐引用方式
GB/T 7714
Dong, Le,Yuan, Yuan,Lu, Xiaoqiang. Spectral-Spatial Joint Sparse NMF for Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(3):2391-2402.
APA Dong, Le,Yuan, Yuan,&Lu, Xiaoqiang.(2021).Spectral-Spatial Joint Sparse NMF for Hyperspectral Unmixing.IEEE Transactions on Geoscience and Remote Sensing,59(3),2391-2402.
MLA Dong, Le,et al."Spectral-Spatial Joint Sparse NMF for Hyperspectral Unmixing".IEEE Transactions on Geoscience and Remote Sensing 59.3(2021):2391-2402.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Spectral-Spatial Joi(2358KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dong, Le]的文章
[Yuan, Yuan]的文章
[Lu, Xiaoqiang]的文章
百度学术
百度学术中相似的文章
[Dong, Le]的文章
[Yuan, Yuan]的文章
[Lu, Xiaoqiang]的文章
必应学术
必应学术中相似的文章
[Dong, Le]的文章
[Yuan, Yuan]的文章
[Lu, Xiaoqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。