Spectral-Spatial Joint Sparse NMF for Hyperspectral Unmixing | |
Dong, Le1,3; Yuan, Yuan2,4![]() ![]() | |
作者部门 | 光谱成像技术研究室 |
2021-03 | |
发表期刊 | IEEE Transactions on Geoscience and Remote Sensing
![]() |
ISSN | 01962892;15580644 |
卷号 | 59期号:3页码:2391-2402 |
产权排序 | 1 |
摘要 | The nonnegative matrix factorization (NMF) combining with spatial-spectral contextual information is an important technique for extracting endmembers and abundances of hyperspectral image (HSI). Most methods constrain unmixing by the local spatial position relationship of pixels or search spectral correlation globally by treating pixels as an independent point in HSI. Unfortunately, they ignore the complex distribution of substance and rich contextual information, which makes them effective in limited cases. In this article, we propose a novel unmixing method via two types of self-similarity to constrain sparse NMF. First, we explore the spatial similarity patch structure of data on the whole image to construct the spatial global self-similarity group between pixels. And according to the regional continuity of the feature distribution, the spectral local self-similarity group of pixels is created inside the superpixel. Then based on the sparse expression of the pixel in the subspace, we sparsely encode the pixels in the same spatial group and spectral group respectively. Finally, the abundance of pixels within each group is forced to be similar to constrain the NMF unmixing framework. Experiments on synthetic and real data fully demonstrate the superiority of our method over other existing methods. © 1980-2012 IEEE. |
关键词 | Global spatial structure group local spectral group nonnegative matrix factorization (NMF) sparse expression |
DOI | 10.1109/TGRS.2020.3006109 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20211010019659 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94527 |
专题 | 光谱成像技术研究室 |
通讯作者 | Lu, Xiaoqiang |
作者单位 | 1.Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 10119, China; 2.School of Computer Science, Northwestern Polytechnical University, Xi'an; 710072, China; 3.University of Chinese Academy of Sciences, Beijing; 100049, China; 4.Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an; 710072, China |
推荐引用方式 GB/T 7714 | Dong, Le,Yuan, Yuan,Lu, Xiaoqiang. Spectral-Spatial Joint Sparse NMF for Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(3):2391-2402. |
APA | Dong, Le,Yuan, Yuan,&Lu, Xiaoqiang.(2021).Spectral-Spatial Joint Sparse NMF for Hyperspectral Unmixing.IEEE Transactions on Geoscience and Remote Sensing,59(3),2391-2402. |
MLA | Dong, Le,et al."Spectral-Spatial Joint Sparse NMF for Hyperspectral Unmixing".IEEE Transactions on Geoscience and Remote Sensing 59.3(2021):2391-2402. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Spectral-Spatial Joi(2358KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论