11 TOPS photonic convolutional accelerator for optical neural networks | |
Xu, Xingyuan1,9; Tan, Mengxi1; Corcoran, Bill2; Wu, Jiayang1; Boes, Andreas3; Nguyen, Thach G.3; Chu, Sai T.4; Little, Brent E.5; Hicks, Damien G.1,6; Morandotti, Roberto7,8; Mitchell, Arnan3; Moss, David J.1 | |
作者部门 | 瞬态光学研究室 |
2021-01-07 | |
发表期刊 | NATURE
![]() |
ISSN | 0028-0836;1476-4687 |
卷号 | 589期号:7840页码:44-+ |
产权排序 | 5 |
摘要 | Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis(1-7). Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (10(12)) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels-sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition. |
DOI | 10.1038/s41586-020-03063-0 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000606497700007 |
出版者 | NATURE RESEARCH |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94263 |
专题 | 瞬态光学研究室 |
通讯作者 | Moss, David J. |
作者单位 | 1.Swinburne Univ Technol, Opt Sci Ctr, Hawthorn, Vic, Australia 2.Monash Univ, Dept Elect & Comp Syst Engn, Clayton, Vic, Australia 3.RMIT Univ, Sch Engn, Melbourne, Vic, Australia 4.City Univ Hong Kong, Dept Phys, Tat Chee Ave, Hong Kong, Peoples R China 5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Peoples R China 6.Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic, Australia 7.INRS Energie Mat & Telecommun, Varennes, PQ, Canada 8.Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Peoples R China 9.Monash Univ, Dept Elect & Comp Syst Engn, Electrophoton Lab, Clayton, Vic, Australia |
推荐引用方式 GB/T 7714 | Xu, Xingyuan,Tan, Mengxi,Corcoran, Bill,et al. 11 TOPS photonic convolutional accelerator for optical neural networks[J]. NATURE,2021,589(7840):44-+. |
APA | Xu, Xingyuan.,Tan, Mengxi.,Corcoran, Bill.,Wu, Jiayang.,Boes, Andreas.,...&Moss, David J..(2021).11 TOPS photonic convolutional accelerator for optical neural networks.NATURE,589(7840),44-+. |
MLA | Xu, Xingyuan,et al."11 TOPS photonic convolutional accelerator for optical neural networks".NATURE 589.7840(2021):44-+. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
11 TOPS photonic con(23456KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论