OPT OpenIR  > 飞行器光学成像与测量技术研究室
Visual Tracking Via Temporally-Regularized Context-Aware Correlation Filters
Liao, Jiawen1; Qi, Chun2; Cao, Jianzhong1; Bian, He1
2020-10
会议名称2020 IEEE International Conference on Image Processing, ICIP 2020
会议录名称2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings
卷号2020-October
页码2051-2055
会议日期2020-09-25
会议地点Virtual, Abu Dhabi, United arab emirates
出版者IEEE Computer Society
产权排序1
摘要

Classical discriminative correlation filter (DCF) model suffers from boundary effects, several modified discriminative correlation filter models have been proposed to mitigate this drawback using enlarged search region, and remarkable performance improvement has been reported by related papers. However, model deterioration is still not well addressed when facing occlusion and other challenging scenarios. In this work, we propose a novel Temporally-regularized Context-aware Correlation Filters (TCCF) model to model the target appearance more robustly. We take advantage of the enlarged search region to obtain more negative samples to make the filter sufficiently trained, and a temporal regularizer, which restricting variation in filter models between frames, is seamlessly integrated into the original formulation. Our model is derived from the new discriminative learning loss formulation, a closed form solution for multidimensional features is provided, which is solved efficiently using Alternating Direction Method of Multipliers (ADMM). Extensive experiments on standard OTB-2015, TempleColor-128 and VOT-2016 benchmarks show that the proposed approach performs favorably against many state-of-the-art methods with real-time performance of 28fps on single CPU. © 2020 IEEE.

关键词Correlation filter Real-time Context tracking ADMM
作者部门飞行器光学成像与测量技术研究室
DOI10.1109/ICIP40778.2020.9191027
收录类别EI ; CPCI
ISBN号9781728163956
语种英语
ISSN号15224880
WOS记录号WOS:000646178502032
EI入藏号20210109724500
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/94232
专题飞行器光学成像与测量技术研究室
作者单位1.Xi'an Institute of Optics and Precision Mechanics, Xi'an, China;
2.Xi'an Jiaotong University, School of Electronics and Information Engineering, Xi'an, China
推荐引用方式
GB/T 7714
Liao, Jiawen,Qi, Chun,Cao, Jianzhong,et al. Visual Tracking Via Temporally-Regularized Context-Aware Correlation Filters[C]:IEEE Computer Society,2020:2051-2055.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Visual Tracking Via (277KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liao, Jiawen]的文章
[Qi, Chun]的文章
[Cao, Jianzhong]的文章
百度学术
百度学术中相似的文章
[Liao, Jiawen]的文章
[Qi, Chun]的文章
[Cao, Jianzhong]的文章
必应学术
必应学术中相似的文章
[Liao, Jiawen]的文章
[Qi, Chun]的文章
[Cao, Jianzhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。