TTH-RNN: Tensor-Train Hierarchical Recurrent Neural Network for Video Summarization | |
Zhao, Bin1,2; Li, Xuelong1,2![]() ![]() | |
作者部门 | 光谱成像技术研究室 |
2021-04 | |
发表期刊 | IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
![]() |
ISSN | 0278-0046;1557-9948 |
卷号 | 68期号:4页码:3629-3637 |
产权排序 | 3 |
摘要 | Although a recurrent neural network (RNN) has achieved tremendous advances in video summarization, there are still some problems remaining to be addressed. In this article, we focus on two intractable problems when applying an RNN to video summarization: first the extremely large feature-to-hidden matrices. Since video features are usually in a high-dimensional space, it leads to extremely large feature-to-hidden mapping matrices in the RNN model, which increases the training difficulty. Second, the deficiency in long-range temporal dependence exploration. Most videos contain thousands of frames at least, which is such a long sequence that traditional RNNs cannot deal well with. Facing the abovementioned two problems, we develop a tensor-train hierarchical recurrent neural network (TTH-RNN) for the video summarization task. It contains a tensor-train embedding layer to avert the large feature-to-hidden matrices, together with a hierarchical structure of an RNN to explore the long-range temporal dependence among video frames. Practically, the experimental results on four benchmark datasets, including SumMe, TVsum, MED, and VTW, have demonstrated the excellent performance of a TTH-RNN in video summarization. |
关键词 | Recurrent neural networks Training Task analysis Tensors Matrix decomposition Standards Feature extraction Hierarchical structure tensor-train embedding layer video summarization |
DOI | 10.1109/TIE.2020.2979573 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000599525100082 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94206 |
专题 | 光谱成像技术研究室 |
通讯作者 | Lu, Xiaoqiang |
作者单位 | 1.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China 2.Northwestern Polytech Univ, Ctr Opt Imagery Anal & Learning, Xian 710072, Peoples R China 3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China |
推荐引用方式 GB/T 7714 | Zhao, Bin,Li, Xuelong,Lu, Xiaoqiang. TTH-RNN: Tensor-Train Hierarchical Recurrent Neural Network for Video Summarization[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2021,68(4):3629-3637. |
APA | Zhao, Bin,Li, Xuelong,&Lu, Xiaoqiang.(2021).TTH-RNN: Tensor-Train Hierarchical Recurrent Neural Network for Video Summarization.IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,68(4),3629-3637. |
MLA | Zhao, Bin,et al."TTH-RNN: Tensor-Train Hierarchical Recurrent Neural Network for Video Summarization".IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 68.4(2021):3629-3637. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
TTH-RNN Tensor-Trai(1796KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论