OPT OpenIR  > 空间光学技术研究室
Skeleton-Based Action Recognition With Key-Segment Descriptor and Temporal Step Matrix Model
Li, Ruimin1,2,3; Fu, Hong3; Lo, Wai-Lun3; Chi, Zheru4; Song, Zongxi1; Wen, Desheng1
作者部门空间光学技术研究室
2019
发表期刊IEEE ACCESS
ISSN2169-3536
卷号7页码:169782-169795
产权排序1
摘要

Human action recognition based on skeleton has played a key role in various computer vision-related applications, such as smart surveillance, human-computer interaction, and medical rehabilitation. However, due to various viewing angles, diverse body sizes, and occasional noisy data, etc., this remains a challenging task. The existing deep learning-based methods require long time to train the models and may fail to provide an interpretable descriptor to code the temporal-spatial feature of the skeleton sequence. In this paper, a key-segment descriptor and a temporal step matrix model are proposed to semantically present the temporal-spatial skeleton data. First, a skeleton normalization is developed to make the skeleton sequence robust to the absolute body size and initial body orientation. Second, the normalized skeleton data is divided into skeleton segments, which are treated as the action units, combining 3D skeleton pose and the motion. Each skeleton sequence is coded as a meaningful and characteristic key segment sequence based on the key segment dictionary formed by the segments from all the training samples. Third, the temporal structure of the key segment sequence is coded into a step matrix by the proposed temporal step matrix model, and the multiscale temporal information is stored in step matrices with various steps. Experimental results on three challenging datasets demonstrate that the proposed method outperforms all the hand-crafted methods and it is comparable to recent deep learning-based methods.

关键词Skeleton Motion segmentation Hidden Markov models Feature extraction Three-dimensional displays Image segmentation Computational modeling Skeleton-based action recognition view alignment scale normalization key-segment descriptor temporal step matrix model
DOI10.1109/ACCESS.2019.2954744
收录类别SCI
语种英语
WOS记录号WOS:000560454900044
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/93729
专题空间光学技术研究室
通讯作者Fu, Hong
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
3.Chu Hai Coll Higher Educ, Dept Comp Sci, Hong Kong, Peoples R China
4.Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Li, Ruimin,Fu, Hong,Lo, Wai-Lun,et al. Skeleton-Based Action Recognition With Key-Segment Descriptor and Temporal Step Matrix Model[J]. IEEE ACCESS,2019,7:169782-169795.
APA Li, Ruimin,Fu, Hong,Lo, Wai-Lun,Chi, Zheru,Song, Zongxi,&Wen, Desheng.(2019).Skeleton-Based Action Recognition With Key-Segment Descriptor and Temporal Step Matrix Model.IEEE ACCESS,7,169782-169795.
MLA Li, Ruimin,et al."Skeleton-Based Action Recognition With Key-Segment Descriptor and Temporal Step Matrix Model".IEEE ACCESS 7(2019):169782-169795.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Skeleton-Based Actio(2559KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Ruimin]的文章
[Fu, Hong]的文章
[Lo, Wai-Lun]的文章
百度学术
百度学术中相似的文章
[Li, Ruimin]的文章
[Fu, Hong]的文章
[Lo, Wai-Lun]的文章
必应学术
必应学术中相似的文章
[Li, Ruimin]的文章
[Fu, Hong]的文章
[Lo, Wai-Lun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。