OPT OpenIR  > 光谱成像技术研究室
Hierarchical Feature Fusion Network for Salient Object Detection
Li, Xuelong1; Song, Dawei2,3; Dong, Yongsheng1
作者部门光谱成像技术研究室
2020
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149;1941-0042
卷号29页码:9165-9175
产权排序2
摘要

Convolutional Neural Network (CNN) has shown their advantages in salient object detection. CNN can generate great saliency maps because it can obtain high-level semantic information. And the semantic information is usually achieved by stacking multiple convolutional layers and pooling layers. However, multiple pooling operations will reduce the size of the feature map and easily blur the boundary of the salient object. Therefore, such operations are not beneficial to generate great saliency results. To alleviate this issue, we propose a novel edge information-guided hierarchical feature fusion network (HFFNet). Our network fuses features hierarchically and retains accurate semantic information and clear edge information effectively. Specifically, we extract image features from different levels of VGG. Then, we fuse the features hierarchically to generate high-level semantic information and low-level edge information. In order to retain better information at different levels, we adopt a one-to-one hierarchical supervision strategy to supervise the generation of low-level information and high-level information respectively. Finally, we use low-level edge information to guide the saliency map generation, and the edge guidance fusion is able to identify saliency regions effectively. The proposed HFFNet has been extensively evaluated on five traditional benchmark datasets. The experimental results demonstrate that the proposed model is fairly effective in salient object detection compared with 10 state-of-the-art models under different evaluation indicators, and it is superior to most of the comparison models.

关键词Feature extraction Semantics Image edge detection Object detection Fuses Visualization Image color analysis Salient object detection hierarchical feature fusion edge information-guided one-to-one hierarchical supervision strategy
DOI10.1109/TIP.2020.3023774
收录类别SCI ; EI
语种英语
WOS记录号WOS:000574739100003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20204209362567
引用统计
被引频次:51[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/93728
专题光谱成像技术研究室
通讯作者Dong, Yongsheng
作者单位1.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Shaanxi Key Lab Ocean Opt, Xian 710119, Peoples R China
3.Univ Chinese Acad Sci, Sch Optoelect, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Li, Xuelong,Song, Dawei,Dong, Yongsheng. Hierarchical Feature Fusion Network for Salient Object Detection[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2020,29:9165-9175.
APA Li, Xuelong,Song, Dawei,&Dong, Yongsheng.(2020).Hierarchical Feature Fusion Network for Salient Object Detection.IEEE TRANSACTIONS ON IMAGE PROCESSING,29,9165-9175.
MLA Li, Xuelong,et al."Hierarchical Feature Fusion Network for Salient Object Detection".IEEE TRANSACTIONS ON IMAGE PROCESSING 29(2020):9165-9175.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Hierarchical Feature(3095KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xuelong]的文章
[Song, Dawei]的文章
[Dong, Yongsheng]的文章
百度学术
百度学术中相似的文章
[Li, Xuelong]的文章
[Song, Dawei]的文章
[Dong, Yongsheng]的文章
必应学术
必应学术中相似的文章
[Li, Xuelong]的文章
[Song, Dawei]的文章
[Dong, Yongsheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。