Photonic Perceptron Based on a Kerr Microcomb for High-Speed, Scalable, Optical Neural Networks | |
Xu, Xingyuan1,8; Tan, Mengxi1; Corcoran, Bill2; Wu, Jiayang1; Nguyen, Thach G.3; Boes, Andreas3; Chu, Sai T.4; Little, Brent E.5; Morandotti, Roberto6; Mitchell, Arnan3; Hicks, Damien G.1,7; Moss, David J.1 | |
作者部门 | 瞬态光学研究室 |
发表期刊 | LASER & PHOTONICS REVIEWS
![]() |
ISSN | 1863-8880;1863-8899 |
产权排序 | 5 |
摘要 | Optical artificial neural networks (ONNs)-analog computing hardware tailored for machine learning-have significant potential for achieving ultra-high computing speed and energy efficiency. A new approach to architectures for ONNs based on integrated Kerr microcomb sources that is programmable, highly scalable, and capable of reaching ultra-high speeds is proposed here. The building block of the ONN-a single neuron perceptron-is experimentally demonstrated that reaches a high single-unit throughput speed of 11.9 Giga-FLOPS at 8 bits per FLOP, corresponding to 95.2 Gbps, achieved by mapping synapses onto 49 wavelengths of a microcomb. The perceptron is tested on simple standard benchmark datasets-handwritten-digit recognition and cancer-cell detection-achieving over 90% and 85% accuracy, respectively. This performance is a direct result of the record low wavelength spacing (49 GHz) for a coherent integrated microcomb source, which results in an unprecedented number of wavelengths for neuromorphic optics. Finally, an approach to scaling the perceptron to a deep learning network is proposed using the same single microcomb device and standard off-the-shelf telecommunications technology, for high-throughput operation involving full matrix multiplication for applications such as real-time massive data processing for unmanned vehicles and aircraft tracking. |
关键词 | Kerr micro-comb machine learning optical neural networks photonic perceptron |
DOI | 10.1002/lpor.202000070 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000555888300001 |
出版者 | WILEY-V C H VERLAG GMBH |
EI入藏号 | 20203209022824 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/93635 |
专题 | 瞬态光学研究室 |
通讯作者 | Moss, David J. |
作者单位 | 1.Swinburne Univ Technol, Opt Sci Ctr, Hawthorn, Vic 3122, Australia 2.Monash Univ, Dept Elect & Comp Syst Engn, Clayton, Vic 3800, Australia 3.RMIT Univ, Sch Engn, Integrated Photon & Applicat Ctr InPAC, Melbourne, Vic 3001, Australia 4.City Univ Hong Kong, Dept Phys, Tat Chee Ave, Hong Kong 999077, Peoples R China 5.Chinese Acad Sci, Xian Inst Opt & Precis Mech Precis Mech, Xian 710119, Peoples R China 6.INRS Energie Mat & Telecommun, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada 7.Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia 8.Monash Univ, Electrophoton Lab, Dept Elect & Comp Syst Engn, Clayton, Vic 3800, Australia |
推荐引用方式 GB/T 7714 | Xu, Xingyuan,Tan, Mengxi,Corcoran, Bill,et al. Photonic Perceptron Based on a Kerr Microcomb for High-Speed, Scalable, Optical Neural Networks[J]. LASER & PHOTONICS REVIEWS. |
APA | Xu, Xingyuan.,Tan, Mengxi.,Corcoran, Bill.,Wu, Jiayang.,Nguyen, Thach G..,...&Moss, David J.. |
MLA | Xu, Xingyuan,et al."Photonic Perceptron Based on a Kerr Microcomb for High-Speed, Scalable, Optical Neural Networks".LASER & PHOTONICS REVIEWS |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Photonic Perceptron (2034KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论