OPT OpenIR  > 光电跟踪与测量技术研究室
Research of Image Sharpness Assessment Algorithm for Autofocus
Her, Lilin1,2; Yang, Xiaojun1
2019-07
会议名称4th IEEE International Conference on Image, Vision and Computing, ICIVC 2019
会议录名称2019 IEEE 4th International Conference on Image, Vision and Computing, ICIVC 2019
页码93-98
会议日期2019-07-05
会议地点Xiamen, China
出版者Institute of Electrical and Electronics Engineers Inc.
产权排序1
摘要With the wide application of imaging system in security monitoring, aerospace, medical image and other fields, how to capture the clear image of the target in real time and automatically is particularly important. Image sharpness evaluation function is the key to evaluate the imaging quality of various imaging systems. The spatial gradient evaluation algorithm is based on the direct processing of image pixels, and the calculation is simple and intuitive. In this paper, we compare the performance of image sharpness evaluation functions in four spatial domains through two sets of atlases with different background richness. Experiments show that Benner algorithm has high scene adaptability and strong anti-jamming ability; Laplace algorithm has high sensitivity and can get results quickly in different size images; Tenengrad algorithm can reduce the occurrence of local extremum after selecting a certain threshold; Robert algorithm has poor unimodality and accuracy in two sets of atlas test. © 2019 IEEE.
关键词sharpness evaluation function autofocus gradient operator brenner algorithm
作者部门光电跟踪与测量技术研究室
DOI10.1109/ICIVC47709.2019.8980980
收录类别EI
ISBN号9781728123257
语种英语
EI入藏号20201908641571
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/93433
专题光电跟踪与测量技术研究室
作者单位1.Chinese Academy of Sciences, Xi'An Institute of Optics and Precision Mechanics, Xi'an, China;
2.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Her, Lilin,Yang, Xiaojun. Research of Image Sharpness Assessment Algorithm for Autofocus[C]:Institute of Electrical and Electronics Engineers Inc.,2019:93-98.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Research of Image Sh(3379KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Her, Lilin]的文章
[Yang, Xiaojun]的文章
百度学术
百度学术中相似的文章
[Her, Lilin]的文章
[Yang, Xiaojun]的文章
必应学术
必应学术中相似的文章
[Her, Lilin]的文章
[Yang, Xiaojun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。