OPT OpenIR  > 光谱成像技术研究室
Spectral-Spatial Attention Network for Hyperspectral Image Classification
Sun, Hao; Zheng, Xiangtao; Lu, Xiaoqiang; Wu, Siyuan
作者部门光谱成像技术研究室
2020-05
发表期刊IEEE Transactions on Geoscience and Remote Sensing
ISSN01962892;15580644
卷号58期号:5页码:3232-3245
产权排序1
摘要

Hyperspectral image (HSI) classification aims to assign each hyperspectral pixel with a proper land-cover label. Recently, convolutional neural networks (CNNs) have shown superior performance. To identify the land-cover label, CNN-based methods exploit the adjacent pixels as an input HSI cube, which simultaneously contains spectral signatures and spatial information. However, at the edge of each land-cover area, an HSI cube often contains several pixels whose land-cover labels are different from that of the center pixel. These pixels, named interfering pixels, will weaken the discrimination of spectral-spatial features and reduce classification accuracy. In this article, a spectral-spatial attention network (SSAN) is proposed to capture discriminative spectral-spatial features from attention areas of HSI cubes. First, a simple spectral-spatial network (SSN) is built to extract spectral-spatial features from HSI cubes. The SSN is composed of a spectral module and a spatial module. Each module consists of only a few 3-D convolution and activation operations, which make the proposed method easy to converge with a small number of training samples. Second, an attention module is introduced to suppress the effects of interfering pixels. The attention module is embedded into the SSN to obtain the SSAN. The experiments on several public HSI databases demonstrate that the proposed SSAN outperforms several state-of-The-Art methods. © 1980-2012 IEEE.

关键词Attention convolutional neural network (CNN) hyperspectral image (HSI) classification spectral–spatial feature extraction
DOI10.1109/TGRS.2019.2951160
收录类别SCI ; EI
语种英语
WOS记录号WOS:000529868700019
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20201908611065
引用统计
被引频次:265[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/93420
专题光谱成像技术研究室
作者单位Key Laboratory of Spectral Imaging Technology CAS, Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China
推荐引用方式
GB/T 7714
Sun, Hao,Zheng, Xiangtao,Lu, Xiaoqiang,et al. Spectral-Spatial Attention Network for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(5):3232-3245.
APA Sun, Hao,Zheng, Xiangtao,Lu, Xiaoqiang,&Wu, Siyuan.(2020).Spectral-Spatial Attention Network for Hyperspectral Image Classification.IEEE Transactions on Geoscience and Remote Sensing,58(5),3232-3245.
MLA Sun, Hao,et al."Spectral-Spatial Attention Network for Hyperspectral Image Classification".IEEE Transactions on Geoscience and Remote Sensing 58.5(2020):3232-3245.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Spectral-Spatial Att(3278KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Hao]的文章
[Zheng, Xiangtao]的文章
[Lu, Xiaoqiang]的文章
百度学术
百度学术中相似的文章
[Sun, Hao]的文章
[Zheng, Xiangtao]的文章
[Lu, Xiaoqiang]的文章
必应学术
必应学术中相似的文章
[Sun, Hao]的文章
[Zheng, Xiangtao]的文章
[Lu, Xiaoqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。