OPT OpenIR  > 光谱成像技术研究室
Supervised Gaussian Process Latent Variable Model for Dimensionality Reduction
Gao, Xinbo1; Wang, Xiumei1; Tao, Dacheng2; Li, Xuelong3; X. Gao
2011-04-01
发表期刊IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS
ISSN1083-4419
卷号41期号:2页码:425-434
摘要The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e. g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.
文章类型Article
关键词Dimensionality Reduction Gaussian Process Latent Variable Model (Gp-lvm) Generalized Discriminant Analysis (Gda) Probabilistic Principal Component Analysis (Probabilistic Pca) Supervised Learning
学科领域信号与模式识别
WOS标题词Science & Technology ; Technology
DOI10.1109/TSMCB.2010.2057422
收录类别SCI ; EI
关键词[WOS]PRINCIPAL COMPONENT ANALYSIS ; CLASSIFICATION ; RECOGNITION
语种英语
WOS研究方向Automation & Control Systems ; Computer Science
WOS类目Automation & Control Systems ; Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000288454300009
引用统计
被引频次:54[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/8628
专题光谱成像技术研究室
通讯作者X. Gao
作者单位1.Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
2.Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
3.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Gao, Xinbo,Wang, Xiumei,Tao, Dacheng,et al. Supervised Gaussian Process Latent Variable Model for Dimensionality Reduction[J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS,2011,41(2):425-434.
APA Gao, Xinbo,Wang, Xiumei,Tao, Dacheng,Li, Xuelong,&X. Gao.(2011).Supervised Gaussian Process Latent Variable Model for Dimensionality Reduction.IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS,41(2),425-434.
MLA Gao, Xinbo,et al."Supervised Gaussian Process Latent Variable Model for Dimensionality Reduction".IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 41.2(2011):425-434.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Gao-IEEE TSMC-B-Supe(1072KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Xinbo]的文章
[Wang, Xiumei]的文章
[Tao, Dacheng]的文章
百度学术
百度学术中相似的文章
[Gao, Xinbo]的文章
[Wang, Xiumei]的文章
[Tao, Dacheng]的文章
必应学术
必应学术中相似的文章
[Gao, Xinbo]的文章
[Wang, Xiumei]的文章
[Tao, Dacheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。