Spatiotemporal interest point detector exploiting appearance and motion-variation information | |
Li, Yanshan1; Li, Qingteng1; Huang, Qinghua2,3,4; Xia, Rongjie1; Li, Xuelong4![]() | |
作者部门 | 光谱成像技术研究室 |
2019-05 | |
发表期刊 | JOURNAL OF ELECTRONIC IMAGING
![]() |
ISSN | 1017-9909;1560-229X |
卷号 | 28期号:3 |
产权排序 | 4 |
摘要 | As a local invariant feature of videos, the spatiotemporal interest point (STIP) has been widely used in computer vision and pattern recognition. However, existing STIP detectors are generally extended from detection algorithms constructed for local invariant features of two-dimensional images, which does not explicitly exploit the motion information inherent in the temporal domain of videos, thus weakening the performance of existing STIP detectors in a video context. To remedy this, we aim to develop an STIP detector that uniformly captures appearance and motion information for video, thus yielding substantial performance improvement. Specifically, under the framework of geometric algebra, we first develop a spatiotemporal unified model of appearance and motion-variation information (UMAMV), and then a UMAMV-based scale space of the spatiotemporal domain is proposed to synthetically analyze appearance information and motion information in a video. Based on this model, we propose an STIP feature of UMAMV-SIFT that embraces both appearance and motion variation information of the videos. Three datasets with different sizes are utilized to evaluate the proposed model and the STIP detector. We present experimental results to show that the UMAMV-SIFT achieves state-of-the-art performance and is particularly effective when dataset is small. (C) 2019 SPIE and IS&T |
关键词 | spatiotemporal interest point detector spatiotemporal interest point geometric algebra video |
DOI | 10.1117/1.JEI.28.3.033002 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000473732200002 |
出版者 | IS&T & SPIE |
EI入藏号 | 20193007218513 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/31587 |
专题 | 光谱成像技术研究室 |
通讯作者 | Li, Yanshan |
作者单位 | 1.Shenzhen Univ, ATR Natl Key Lab Def Technol, Shenzhen, Peoples R China 2.Northwestern Polytech Univ, Sch Mech Engn, Ctr Opt Imagery Anal & Learning, Xian, Shaanxi, Peoples R China 3.South China Univ Technol, Sch Elect & Informat Engn, Guangzhou, Guangdong, Peoples R China 4.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Yanshan,Li, Qingteng,Huang, Qinghua,et al. Spatiotemporal interest point detector exploiting appearance and motion-variation information[J]. JOURNAL OF ELECTRONIC IMAGING,2019,28(3). |
APA | Li, Yanshan,Li, Qingteng,Huang, Qinghua,Xia, Rongjie,&Li, Xuelong.(2019).Spatiotemporal interest point detector exploiting appearance and motion-variation information.JOURNAL OF ELECTRONIC IMAGING,28(3). |
MLA | Li, Yanshan,et al."Spatiotemporal interest point detector exploiting appearance and motion-variation information".JOURNAL OF ELECTRONIC IMAGING 28.3(2019). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Spatiotemporal inter(3095KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论