OPT OpenIR  > 光谱成像技术研究室
A Deep Scene Representation for Aerial Scene Classification
Zheng, Xiangtao1; Yuan, Yuan2; Lu, Xiaoqiang1
作者部门光谱成像技术研究室
2019-07
发表期刊IEEE Transactions on Geoscience and Remote Sensing
ISSN01962892
卷号57期号:7页码:4799-4809
产权排序1
摘要

As a fundamental problem in earth observation, aerial scene classification tries to assign a specific semantic label to an aerial image. In recent years, the deep convolutional neural networks (CNNs) have shown advanced performances in aerial scene classification. The successful pretrained CNNs can be transferable to aerial images. However, global CNN activations may lack geometric invariance and, therefore, limit the improvement of aerial scene classification. To address this problem, this paper proposes a deep scene representation to achieve the invariance of CNN features and further enhance the discriminative power. The proposed method: 1) extracts CNN activations from the last convolutional layer of pretrained CNN; 2) performs multiscale pooling (MSP) on these activations; and 3) builds a holistic representation by the Fisher vector method. MSP is a simple and effective multiscale strategy, which enriches multiscale spatial information in affordable computational time. The proposed representation is particularly suited at aerial scenes and consistently outperforms global CNN activations without requiring feature adaptation. Extensive experiments on five aerial scene data sets indicate that the proposed method, even with a simple linear classifier, can achieve the state-of-the-art performance. © 1980-2012 IEEE.

关键词Aerial scene classification convolutional neural networks (CNNs) Fisher vector (FV) multiscale representation
DOI10.1109/TGRS.2019.2893115
收录类别SCI ; EI
语种英语
WOS记录号WOS:000473436000050
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20192707140732
引用统计
被引频次:104[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/31572
专题光谱成像技术研究室
通讯作者Lu, Xiaoqiang
作者单位1.Key Laboratory of Spectral Imaging Technology CAS, Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China;
2.Center for Optical Imagery Analysis and Learning, School of the Computer Science, Northwestern Polytechnical University, Xi'an; 710072, China
推荐引用方式
GB/T 7714
Zheng, Xiangtao,Yuan, Yuan,Lu, Xiaoqiang. A Deep Scene Representation for Aerial Scene Classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(7):4799-4809.
APA Zheng, Xiangtao,Yuan, Yuan,&Lu, Xiaoqiang.(2019).A Deep Scene Representation for Aerial Scene Classification.IEEE Transactions on Geoscience and Remote Sensing,57(7),4799-4809.
MLA Zheng, Xiangtao,et al."A Deep Scene Representation for Aerial Scene Classification".IEEE Transactions on Geoscience and Remote Sensing 57.7(2019):4799-4809.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Deep Scene Represe(3061KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Xiangtao]的文章
[Yuan, Yuan]的文章
[Lu, Xiaoqiang]的文章
百度学术
百度学术中相似的文章
[Zheng, Xiangtao]的文章
[Yuan, Yuan]的文章
[Lu, Xiaoqiang]的文章
必应学术
必应学术中相似的文章
[Zheng, Xiangtao]的文章
[Yuan, Yuan]的文章
[Lu, Xiaoqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。