Locality-Based Discriminant Feature Selection with Trace Ratio | |
Guo, Muhan1; Yang, Sheng1; Nie, Feiping1; Li, Xuelong2![]() | |
2018-08-29 | |
会议名称 | 25th IEEE International Conference on Image Processing, ICIP 2018 |
会议录名称 | 2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings |
页码 | 3373-3377 |
会议日期 | 2018-10-07 |
会议地点 | Athens, Greece |
出版者 | IEEE Computer Society |
产权排序 | 2 |
摘要 | Feature selection plays an important role to select the informative and valuable features especially in high-dimensional data. However, some conventional feature selection methods select the features according to a feature subset score, which are often time-consuming, not quite robust to noise and neglecting the local data structure. To address this problem, we propose a novel feature selection approach, namely locality-based discriminant feature selection with trace ratio (LDFS), which can perform local data structure learning, and feature selection simultaneously. Furthermore, the proposed approach is robust to data noise and can pick out genuinely valuable features. In the end, experimental results on synthetic and real-world datasets demonstrate the effectiveness of the proposed method. © 2018 IEEE. |
作者部门 | 光谱成像技术研究室 |
DOI | 10.1109/ICIP.2018.8451109 |
收录类别 | EI |
ISBN号 | 9781479970612 |
语种 | 英语 |
ISSN号 | 15224880 |
EI入藏号 | 20191206646380 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/31346 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.School of Computer Science, Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi; 710072, China; 2.State Key Laboratory of Transient Optics and Photonics, Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi; 710119, China |
推荐引用方式 GB/T 7714 | Guo, Muhan,Yang, Sheng,Nie, Feiping,et al. Locality-Based Discriminant Feature Selection with Trace Ratio[C]:IEEE Computer Society,2018:3373-3377. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Locality-Based Discr(3547KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论