TLR: Transfer Latent Representation for Unsupervised Domain Adaptation | |
Xiao, Pan1; Du, Bo1; Wu, Jia2; Zhang, Lefei1; Hu, Ruimin1; Li, Xuelong3![]() | |
2018-10-08 | |
会议名称 | 2018 IEEE International Conference on Multimedia and Expo, ICME 2018 |
会议录名称 | 2018 IEEE International Conference on Multimedia and Expo, ICME 2018 |
卷号 | 2018-July |
会议日期 | 2018-07-23 |
会议地点 | San Diego, CA, United states |
出版者 | IEEE Computer Society |
产权排序 | 3 |
摘要 | Domain adaptation refers to the process of learning prediction models in a target domain by making use of data from a source domain. Many classic methods solve the domain adaptation problem by establishing a common latent space, which may cause the loss of many important properties across both domains. In this manuscript, we develop a novel method, transfer latent representation (TLR), to learn a better latent space. Specifically, we design an objective function based on a simple linear autoencoder to derive the latent representations of both domains. The encoder in the autoencoder aims to project the data of both domains into a robust latent space. Besides, the decoder imposes an additional constraint to reconstruct the original data, which can preserve the common properties of both domains and reduce the noise that causes domain shift. Experiments on cross-domain tasks demonstrate the advantages of TLR over competing methods. © 2018 IEEE. |
作者部门 | 光谱成像技术研究室 |
DOI | 10.1109/ICME.2018.8486513 |
收录类别 | EI |
ISBN号 | 9781538617373 |
语种 | 英语 |
ISSN号 | 19457871;1945788X |
EI入藏号 | 20190706509197 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/31262 |
专题 | 光谱成像技术研究室 |
通讯作者 | Du, Bo |
作者单位 | 1.School of Computer, Wuhan University, Wuhan, Hubei; 430072, China; 2.Department of Computing, Macquarie University, Sydney; NSW; 2109, Australia; 3.Chinese Academy of Sciences, Xi'An Institute of Optics and Precision Mechanics, Xi'an, Shaanxi; 710119, China |
推荐引用方式 GB/T 7714 | Xiao, Pan,Du, Bo,Wu, Jia,et al. TLR: Transfer Latent Representation for Unsupervised Domain Adaptation[C]:IEEE Computer Society,2018. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
TLR Transfer Latent (1794KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论