Denoising and dimensionality reduction based on PARAFAC decomposition for hyperspectral images | |
Yan, Rong-Hua1,2; Peng, Jin-Ye1,3; Wen, De-Sheng2![]() | |
2018 | |
会议名称 | International Symposium on Optoelectronic Technology and Application 2018: Optical Sensing and Imaging Technologies and Applications 2018, OTA 2018 |
会议录名称 | Optical Sensing and Imaging Technologies and Applications |
卷号 | 10846 |
会议日期 | 2018-05-22 |
会议地点 | Beijing, China |
出版者 | SPIE |
产权排序 | 1 |
摘要 | In hyperspectral image analysis, classification requires spectral dimensionality reduction (DR). Tensor decompositions have been successfully applied to joint noise reduction in spatial and spectral dimensions of hyperspectral images, such as parallel factor analysis (PARAFAC). However, the PARAFAC method does not reduce the dimension in the spectral dimension. To improve itï1/4a new method was proposed in this paper, that is, combine PCA and PARAFAC to reduce both the dimension in the spectral dimension and the noise in the spatial and spectral dimensions. The experiment results indicate that the new method improves the classification compared with the previous methods. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
作者部门 | 空间光学技术研究室 |
DOI | 10.1117/12.2505370 |
收录类别 | EI |
ISBN号 | 9781510623347 |
语种 | 英语 |
ISSN号 | 0277786X;1996765X |
EI入藏号 | 20185206302182 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/31123 |
专题 | 空间光学技术研究室 |
作者单位 | 1.School of Electronics and Information, Northwestern Polytechnical University, Xi'an; 710072, China; 2.Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China; 3.School of Information and Technology, Northwest University, Xi'an; 710127, China; 4.Xi'an-Janssen Pharmaceutical Ltd., Xi'an; 710043, China |
推荐引用方式 GB/T 7714 | Yan, Rong-Hua,Peng, Jin-Ye,Wen, De-Sheng,et al. Denoising and dimensionality reduction based on PARAFAC decomposition for hyperspectral images[C]:SPIE,2018. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Denoising and dimens(959KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论