OPT OpenIR  > 光谱成像技术研究室
Enhancing boundary for video object segmentation
Zhang, Qi1,2; Lu, Xiaoqiang1; Yuan, Yuan1
2018-08-27
会议名称2nd International Conference on Vision, Image and Signal Processing, ICVISP 2018
会议录名称Proceedings of the 2nd International Conference on Vision, Image and Signal Processing, ICVISP 2018
会议日期2018-08-27
会议地点Las Vegas, NV, United states
出版者Association for Computing Machinery
产权排序1
摘要

Video object segmentation aims to separate objects from background in successive video sequence accurately. It is a challenging task as the huge variance in object regions and similarity between object and background. Among previous methods, inner region of an object can be easily separated from background while the region around object boundary is often classified improperly. To address this problem, a novel video object segmentation method is proposed to enhance the object boundary by integrating video supervoxel into Convolutional Neural Network (CNN) model. Supervoxel is exploited in our method for its ability of preserving spatial details. The proposed method can be divided into four steps: 1) convolutional feature of video is extracted with CNN model; 2) supervoxel feature is constructed through averaging the convolutional features within each supervoxel to preserve spatial details of video; 3) the supervoxel feature and original convolutional feature are fused to construct video representation; 4) a softmax classifier is trained based on video representation to classify each pixel in video. The proposed method is evaluated both on DAVIS and Youtube-Objects datasets. Experimental results show that by considering supervoxel with spatial details, the proposed method can achieve impressive performance for video object segmentation through enhancing object boundary. © 2018 ACM.

作者部门光谱成像技术研究室
DOI10.1145/3271553.3271581
收录类别EI ; CPCI
ISBN号9781450365291
语种英语
WOS记录号WOS:000461414900010
EI入藏号20185106273450
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/31108
专题光谱成像技术研究室
作者单位1.Center for OPTical IMagery Analysis and Learning (OPTIMAL), Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shanxi; 710119, China;
2.University of Chinese Academy of Sciences, Beijing; 100049, China
推荐引用方式
GB/T 7714
Zhang, Qi,Lu, Xiaoqiang,Yuan, Yuan. Enhancing boundary for video object segmentation[C]:Association for Computing Machinery,2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Enhancing boundary f(1926KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Qi]的文章
[Lu, Xiaoqiang]的文章
[Yuan, Yuan]的文章
百度学术
百度学术中相似的文章
[Zhang, Qi]的文章
[Lu, Xiaoqiang]的文章
[Yuan, Yuan]的文章
必应学术
必应学术中相似的文章
[Zhang, Qi]的文章
[Lu, Xiaoqiang]的文章
[Yuan, Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。