Deep neural networks with Elastic Rectified Linear Units for object recognition | |
Jiang, Xiaoheng1; Pang, Yanwei1; Li, Xuelong2; Pan, Jing1,3; Xie, Yinghong1,4 | |
作者部门 | 光学影像学习与分析中心 |
2018-01-31 | |
发表期刊 | NEUROCOMPUTING
![]() |
ISSN | 0925-2312 |
卷号 | 275页码:1132-1139 |
产权排序 | 2 |
摘要 | Rectified Linear Unit (ReLU) is crucial to the recent success of deep neural networks (DNNs). In this paper, we propose a novel Elastic Rectified Linear Unit (EReLU) that focuses on processing the positive part of input. Unlike previous variants of ReLU that typically adopt linear or piecewise linear functions to represent the positive part, EReLU is characterized by that each positive value scales within a moderate range like a spring during training stage. On test time, EReLU becomes standard ReLU. EReLU improves model fitting with no extra parameters and little overfitting risk. Furthermore, we propose Elastic Parametric Rectified Linear Unit (EPReLU) by taking advantage of EReLU and parametric ReLU (PReLU). EPReLU is able to further improve the performance of networks. In addition, we present a new training strategy to train DNNs with EPReLU. Experiments on four benchmarks including CIFAR10, CIFAR10, SVHN and ImageNet 2012 demonstrate the effectiveness of both EReLU and EPReLU. (C) 2017 Elsevier B.V. All rights reserved.
|
关键词 | Deep Neural Networks Elastic Rectified Linear Unit (Erelu) Elastic Parametric Rectified Linear Unit (Eprelu) Non-saturating Nonlinear Activation Function |
DOI | 10.1016/j.neucom.2017.09.056 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000418370200108 |
EI入藏号 | 20174104249355 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/30822 |
专题 | 光谱成像技术研究室 |
通讯作者 | Pang, Yanwei |
作者单位 | 1.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China; 2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China; 3.Tianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China; 4.Shenyang Univ, Coll Informat Engn, Shenyang 110044, Liaoning, Peoples R China |
推荐引用方式 GB/T 7714 | Jiang, Xiaoheng,Pang, Yanwei,Li, Xuelong,et al. Deep neural networks with Elastic Rectified Linear Units for object recognition[J]. NEUROCOMPUTING,2018,275:1132-1139. |
APA | Jiang, Xiaoheng,Pang, Yanwei,Li, Xuelong,Pan, Jing,&Xie, Yinghong.(2018).Deep neural networks with Elastic Rectified Linear Units for object recognition.NEUROCOMPUTING,275,1132-1139. |
MLA | Jiang, Xiaoheng,et al."Deep neural networks with Elastic Rectified Linear Units for object recognition".NEUROCOMPUTING 275(2018):1132-1139. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Deep neural networks(921KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论