OPT OpenIR  > 光谱成像技术研究室
Patient-specific ECG classification by deeper CNN from generic to dedicated
Li, Yazhao1; Pang, Yanwei1; Wang, Jian1; Li, Xuelong2
作者部门光学影像学习与分析中心
2018-11-07
发表期刊NEUROCOMPUTING
ISSN0925-2312;1879-2545
卷号314页码:336-346
产权排序2
摘要

This paper presents a new mechanism which is more effective for wearable devices to classify patient-specific electrocardiogram (ECG) heartbeats. In our method, a Generic Convolutional Neural Network (GCNN) is trained first using a large number of heartbeats without distinguishing patients. Based on the GCNN, fine-tuning technique is applied to modify the GCNN to a Tuned Dedicated CNN (TDCNN) for the corresponding individual. Notably, only the GCNN instead of common training data is required to be stored into wearable devices. Moreover, only fine-tuning with several seconds rather than dozens of minutes is needed before the TDCNN is used to monitor the long-term ECG signals in clinical. To accelerate the ECG classification, only the original ECG heartbeat is input to the CNN without other extended information from the neighbor heartbeats or FFT representation. A deeper CNN architecture with small-scale convolutional kernels is adopted to improve the speed and accuracy for classification. With deeper CNN, hierarchical features can be extracted to help improve the accuracy of ECG classification. The state-of-the-art performance on efficiency and accuracy for ECG classification over MIT-BIH dataset is achieved by the proposed method. The effectiveness and superiority for detecting ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB) events are demonstrated. The proposed mechanism of fine-tuning the GCNN to TDCNN improves the efficiency for training patient-specific CNN classifier. Because of the computational efficiency of fine-tuning, ECG diagnosis and heart monitoring can be easily implemented with popular wearable devices in practice. (C) 2018 Elsevier B.V. All rights reserved.

关键词Ecg Classification Deep Convolutional Neural Networks (Cnn) Generic Cnn (gCnn) Tuned Dedicated Cnn (tdCnn) Heart Monitoring Wearable Devices
DOI10.1016/j.neucom.2018.06.068
收录类别SCI ; EI
语种英语
WOS记录号WOS:000443718400033
出版者ELSEVIER SCIENCE BV
EI入藏号20182905572520
引用统计
被引频次:83[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30617
专题光谱成像技术研究室
通讯作者Pang, Yanwei
作者单位1.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
2.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Li, Yazhao,Pang, Yanwei,Wang, Jian,et al. Patient-specific ECG classification by deeper CNN from generic to dedicated[J]. NEUROCOMPUTING,2018,314:336-346.
APA Li, Yazhao,Pang, Yanwei,Wang, Jian,&Li, Xuelong.(2018).Patient-specific ECG classification by deeper CNN from generic to dedicated.NEUROCOMPUTING,314,336-346.
MLA Li, Yazhao,et al."Patient-specific ECG classification by deeper CNN from generic to dedicated".NEUROCOMPUTING 314(2018):336-346.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Patient-specific ECG(933KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Yazhao]的文章
[Pang, Yanwei]的文章
[Wang, Jian]的文章
百度学术
百度学术中相似的文章
[Li, Yazhao]的文章
[Pang, Yanwei]的文章
[Wang, Jian]的文章
必应学术
必应学术中相似的文章
[Li, Yazhao]的文章
[Pang, Yanwei]的文章
[Wang, Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。