OPT OpenIR  > 光谱成像技术研究室
A Coarse-to-Fine Semi-Supervised Change Detection for Multispectral Images
Zhang, Wuxia1,2; Lu, Xiaoqiang1; Li, Xuelong1,2; Lu, XQ (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt Imagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China.
作者部门光学影像学习与分析中心
2018-06-01
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号56期号:6页码:3587-3599
产权排序1
摘要

Change detection is an important technique providing insights to urban planning, resources monitoring, and environmental studies. For multispectral images, most semi-supervised change detection methods focus on improving the contribution of training samples hard to be classified to the trained classifier. However, hard training samples will weaken the discrimination of the training model for multispectral change detection. Besides, these methods only use the spectral information, while the limited spectral information cannot represent objects very well. In this paper, a method named as coarse-to-fine semi-supervised change detection is proposed to solve the aforementioned problems. First, a novel multiscale feature is exploited by concatenating the spectral vector of the pixel to be detected and its adjacent pixels by different scales. Second, the enhanced metric learning is proposed to acquire more discriminant metric by strengthening the contribution of training samples easy to be classified and weakening the contribution of training samples hard to be classified to the trained model. Finally, a coarse-to-fine strategy is adopted to detect testing samples from the viewpoint of distance metric and label information of neighborhood in spatial space. The coarse detection result obtained from the enhanced metric learning is used to guide the final detection. The effectiveness of our proposed method is verified on two real-life operating scenarios, Taizhou and Kunshan data sets. Extensive experimental results demonstrate that our proposed algorithm has better performance than those of other state-of-the-art algorithms.

文章类型Article
关键词Change Detection Keep It Simple And Straight-forward (Kiss) Metric Learning Multiscale Feature Multispectral Imagery Semi-supervised Learning
学科领域Geochemistry & Geophysics
WOS标题词Science & Technology ; Physical Sciences ; Technology
DOI10.1109/TGRS.2018.2802785
收录类别SCI ; EI
关键词[WOS]Unsupervised Change Detection ; Remotely-sensed Images ; Sensing Images ; Feature-extraction ; Time-series ; Classification ; Saliency ; System
语种英语
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
项目资助者National Natural Science Foundation of China(61761130079 ; Chinese Academy of Sciences (CAS)(QYZDY-SSW-JSC044) ; Young Top-Notch Talent Program of CAS(QYZDB-SSW-JSC015) ; 61472413 ; 61772510)
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000433328400047
EI入藏号20181605010511
引用统计
被引频次:61[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30355
专题光谱成像技术研究室
通讯作者Lu, XQ (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt Imagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China.
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt Imagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Wuxia,Lu, Xiaoqiang,Li, Xuelong,et al. A Coarse-to-Fine Semi-Supervised Change Detection for Multispectral Images[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2018,56(6):3587-3599.
APA Zhang, Wuxia,Lu, Xiaoqiang,Li, Xuelong,&Lu, XQ .(2018).A Coarse-to-Fine Semi-Supervised Change Detection for Multispectral Images.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,56(6),3587-3599.
MLA Zhang, Wuxia,et al."A Coarse-to-Fine Semi-Supervised Change Detection for Multispectral Images".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 56.6(2018):3587-3599.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Coarse-to-Fine Sem(3641KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Wuxia]的文章
[Lu, Xiaoqiang]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Zhang, Wuxia]的文章
[Lu, Xiaoqiang]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Zhang, Wuxia]的文章
[Lu, Xiaoqiang]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。