Improved force prediction model for grinding Zerodur based on the comprehensive material removal mechanism | |
Sun, Guoyan1,2![]() ![]() | |
作者部门 | 光学定向与测量技术研究室 |
2018-05-10 | |
发表期刊 | APPLIED OPTICS
![]() |
ISSN | 1559-128X |
卷号 | 57期号:14页码:3704-3713 |
产权排序 | 1 |
摘要 | There have been few investigations dealing with the force model on grinding brittle materials. However, the dynamic material removal mechanisms have not yet been sufficiently explicated through the grain-workpiece interaction statuses while considering the brittle material characteristics. This paper proposes an improved grinding force model for Zerodur, which contains ductile removal force, brittle removal force, and frictional force, corresponding to the ductile and brittle material removal phases, as well as the friction process, respectively. The critical uncut chip thickness alpha(gc) of brittle-ductile transition and the maximum uncut chip thickness alpha(gmax) of a single abrasive grain are calculated to identify the specified material removal mode, while the comparative result between alpha(gmax) and alpha(gc) can be applied to determine the selection of effective grinding force components. Subsequently, indentation fracture tests are carried out to acquire accurate material mechanical properties of Zerodur in establishing the brittle removal force model. Then, the experiments were conducted to derive the coefficients in the grinding force prediction model. Simulated through this model, correlations between the grinding force and grinding parameters can be predicted. Finally, three groups of grinding experiments are carried out to validate the mathematical grinding force model. The experimental results indicate that the improved model is capable of predicting the realistic grinding force accurately with the relative mean errors of 6.04% to the normal grinding force and 7.22% to the tangential grinding force, respectively. (C) 2018 Optical Society of America. |
文章类型 | Article |
学科领域 | Optics |
WOS标题词 | Science & Technology ; Physical Sciences |
DOI | 10.1364/AO.57.003704 |
收录类别 | SCI ; EI |
关键词[WOS] | SUBSURFACE DAMAGE ; SURFACE-ROUGHNESS ; THERMAL-EXPANSION ; GLASS ; CERAMICS ; SIZE |
语种 | 英语 |
WOS研究方向 | Optics |
项目资助者 | National Natural Science Foundation of China (NSFC)(51475109) ; Natural Science Foundation of Shandong Province(ZR2014EEP025) |
WOS类目 | Optics |
WOS记录号 | WOS:000431880000011 |
EI入藏号 | 20182005196643 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/30098 |
专题 | 光学定向与测量技术研究室 |
通讯作者 | Sun, GY (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China. |
作者单位 | 1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Shandong Univ Technol, Sch Mech Engn, Zibo 255000, Peoples R China 4.Harbin Inst Technol, Sch Mechatron Engn, Ctr Precis Engn, Harbin 150001, Heilongjiang, Peoples R China |
推荐引用方式 GB/T 7714 | Sun, Guoyan,Zhao, Lingling,Zhao, Qingliang,et al. Improved force prediction model for grinding Zerodur based on the comprehensive material removal mechanism[J]. APPLIED OPTICS,2018,57(14):3704-3713. |
APA | Sun, Guoyan,Zhao, Lingling,Zhao, Qingliang,Gao, Limin,&Sun, GY .(2018).Improved force prediction model for grinding Zerodur based on the comprehensive material removal mechanism.APPLIED OPTICS,57(14),3704-3713. |
MLA | Sun, Guoyan,et al."Improved force prediction model for grinding Zerodur based on the comprehensive material removal mechanism".APPLIED OPTICS 57.14(2018):3704-3713. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Improved force predi(2084KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论